Team:INSA-Lyon/Project/Future direction

From 2010.igem.org

(Difference between revisions)
Line 45: Line 45:
<p>Granules are a new way to purify proteins and lipids of interest. Our main goal during this project was to develop such a technic. In this context we designed a new part <a href="http://partsregistry.org/wiki/index.php?title=Part:BBa_K342002">(phasin-phasin-intein)</a> wich has previously been described as a good way to adress protein to the granules.  Indeed a protein fused to this part is supposed to be adressed to the granule and once the granules extracted, a switch of pH can then release the protein of interest. Therefore we wanted first to prove that a GFP fused to the phasin-phasin-intein was correctly adressed to the granules. But, due to a lack of time we didn’t manage to realize the experiment. So the first thing to do is to achieve this experiment. <br/>  More simple technics already exist to purify proteins and  some works has to be done to determine if the granule purification system present any advantage (purity  and yield). Simple experiments using GFP as a reporter can be done to complete these studies.
<p>Granules are a new way to purify proteins and lipids of interest. Our main goal during this project was to develop such a technic. In this context we designed a new part <a href="http://partsregistry.org/wiki/index.php?title=Part:BBa_K342002">(phasin-phasin-intein)</a> wich has previously been described as a good way to adress protein to the granules.  Indeed a protein fused to this part is supposed to be adressed to the granule and once the granules extracted, a switch of pH can then release the protein of interest. Therefore we wanted first to prove that a GFP fused to the phasin-phasin-intein was correctly adressed to the granules. But, due to a lack of time we didn’t manage to realize the experiment. So the first thing to do is to achieve this experiment. <br/>  More simple technics already exist to purify proteins and  some works has to be done to determine if the granule purification system present any advantage (purity  and yield). Simple experiments using GFP as a reporter can be done to complete these studies.
<br>
<br>
-
A big challenge in the production of lipids is to find an intracellular vector to stock these highly insoluble molecules. Our hypothesis was that granules with their lipidic composition could be the solution. We found in the registry a part responsible for lycopen synthesis and we decided to test their becoming in a cell producing granules.<br/> Unfortunately, we didn't manage to co-localize the granules and the lycopene inside the bacteria because it was impossible to differentiate the lycopene and PHB by fluorescence microscopy. So, we thought about other ways to verify our hypothesis. For example, granules could have been extracted after induction of lycopene production and analysed by HPLC.  
+
<br>
 +
A big challenge in the production of lipids is to find an intracellular vector to stock these highly insoluble molecules. Our hypothesis was that granules with their lipidic composition could be the solution. We found in the registry a part responsible for lycopen synthesis and we decided to test their becoming in a cell producing granules.<br/> Unfortunately, we didn't manage to co-localize the granules and the lycopene inside the bacteria because it was impossible to differentiate the lycopene and PHB by fluorescence microscopy. So, we thought about other ways to verify our hypothesis. For example, granules could have been extracted after induction of lycopene production and analysed by HPLC. Moreover, a study about the length and the chemical properties of the acyl chain that can be inserted into the granules has to be done to know which kind of lipids can be stocked this way.
</p>
</p>
<br /><br /><br />
<br /><br /><br />
<h3><font color="purple">Regulation</font></h3><br />
<h3><font color="purple">Regulation</font></h3><br />
-
<p>We characterize the natural curli promoter inside a plasmid and we wanted to link those results with the ones of our <a href="http://partsregistry.org/wiki/index.php?title=Part:BBa_K342000">designed curli promoter</a>. But we were not able to realize the measurements to conclude about the performance of our biobrick.</p>
+
<p>We characterize the natural curli promoter inside a plasmid and we wanted to link those results with the ones of our <a href="http://partsregistry.org/wiki/index.php?title=Part:BBa_K342000">designed curli promoter</a>. But we were not able to realize the measures to conclude about the performance of our biobrick. However during this characterization, we realised that ompR234 mutation generates a slight increase in the capacity of E. coli to produce biofilm. One interesting thing to do would be to determine if such an effect could be observed with a plasmidic version of this mutation. Indeed, producing this mutated regulator from a high copy plasmid has great chance to amplify the effect observed with the genomic mutation. </p>
</div>
</div>

Revision as of 00:40, 28 October 2010





Further Directions


Our project was full of ideas but time was short to achieve it completely. So there is still many possibilities and things to do in order to improve our results.


Production


We managed to produce granules and a new operational PhaC part but we didn't send the complete operon (phaCAB) which would able any team to produce PHB granules inside E.coli.




Uses


Granules are a new way to purify proteins and lipids of interest. Our main goal during this project was to develop such a technic. In this context we designed a new part (phasin-phasin-intein) wich has previously been described as a good way to adress protein to the granules. Indeed a protein fused to this part is supposed to be adressed to the granule and once the granules extracted, a switch of pH can then release the protein of interest. Therefore we wanted first to prove that a GFP fused to the phasin-phasin-intein was correctly adressed to the granules. But, due to a lack of time we didn’t manage to realize the experiment. So the first thing to do is to achieve this experiment.
More simple technics already exist to purify proteins and some works has to be done to determine if the granule purification system present any advantage (purity and yield). Simple experiments using GFP as a reporter can be done to complete these studies.

A big challenge in the production of lipids is to find an intracellular vector to stock these highly insoluble molecules. Our hypothesis was that granules with their lipidic composition could be the solution. We found in the registry a part responsible for lycopen synthesis and we decided to test their becoming in a cell producing granules.
Unfortunately, we didn't manage to co-localize the granules and the lycopene inside the bacteria because it was impossible to differentiate the lycopene and PHB by fluorescence microscopy. So, we thought about other ways to verify our hypothesis. For example, granules could have been extracted after induction of lycopene production and analysed by HPLC. Moreover, a study about the length and the chemical properties of the acyl chain that can be inserted into the granules has to be done to know which kind of lipids can be stocked this way.




Regulation


We characterize the natural curli promoter inside a plasmid and we wanted to link those results with the ones of our designed curli promoter. But we were not able to realize the measures to conclude about the performance of our biobrick. However during this characterization, we realised that ompR234 mutation generates a slight increase in the capacity of E. coli to produce biofilm. One interesting thing to do would be to determine if such an effect could be observed with a plasmidic version of this mutation. Indeed, producing this mutated regulator from a high copy plasmid has great chance to amplify the effect observed with the genomic mutation.