Team:British Columbia


Blasting Away Biofilms

To disperse Staphylococcus aureus biofilms, our team is working to express a bacteriophage and biofilm-degrading enzyme under the control of the agr quorum-sensing system.

Our Project Page

And The Award Goes To...

Here's a list of the things we've accomplished according to iGEM judging and awards criteria.

Our Accomplishments

It's Human!

Wonder what people on the streets think about synthetic biology? Come take a look at our quirky promoter maps, fabulous art gallery, NaNoWriMo synthetic biology novels, and live forum!

Talk Play Love

We are 9 undergraduate students, 2 graduate advisors and 3 faculty advisors from various disciplines including Pharmacology, Physiology, the Life Sciences, Materials Engineering, Chemical and Biological Engineering, and Engineering Physics.

Get up close and personal!

With the aim of dispersing Staphylococcus aureus biofilms, our team is working to express an endogenous bacteriophage and biofilm matrix-degrading enzyme DspB under the control of the agr quorum-sensing system. We are using existing BioBrick parts (e.g. the P2 promoter) as well as our own new DspB Biobrick part. We have also developd a new standard for working with bacteriophages.

Learn more at our Project page!

Our new and characterized Biobrick part is the biofilm matrix-degrading enzyme DspB. In addition, we have further characterized the existing promoter Biobrick parts, P2 (BBa_I174106) and Pcon (BBa_J23100) in Staphylococcus aureus.

For more details, visit our Parts page!

We have developed a model of biofilm population dynamics as affected by our engineered bacteriophage. Using this model, we are able to run simulations that predict outcomes of the system and construct informed hypotheses to test with our system.

Visit our Modeling page!

What are human practices? What are its goals? Gaze upon our promoter maps to see what people on the streets think "Synthetic Biology" means. Browse through our art gallery, read NaNoWriMo novels, and be inspired to think more deeply about the diverse issues of synthetic biology. Share your thoughts at our forum discussions about synthetic biology and its applications.

What are you waiting for?

Every sub-team has its unique story of success and heartbreak. What are most important are the invaluable lessons learned, the extensive trouble-shooting expertise gained, the bonds of friendship formed, and of course... the victories!

Come trace our steps...

The International Genetically Engineered Machine competition (iGEM) is the premiere undergraduate synthetic biology competition. Student teams world-wide are given a set of biological parts from the Registry of Standard Biological Parts. Over the summer, the teams use these parts and create new parts of their own to build biological systems and operate them in living cells to achieve various creative purposes. To complement their wet lab findings, the teams also endeavour to design and carry out computer modeling and human practices projects. Through this experience, undergraduate students gain insight into the research process of seeking out information and protocols to come up with their own novel project (not to mention all the re-searching and trouble-shooting expertise gained!). Graduate student advisors also get a taste of what it feels like to be a principal investigator or lab manager in terms of providing for and guiding the undergraduate students. Finally, in November, hundreds of iGEM teams gather at MIT to compete at the annual Jamboree!