Team:Freiburg Bioware/Modeling

From 2010.igem.org

(Difference between revisions)
 
(16 intermediate revisions not shown)
Line 10: Line 10:
<h2>Introduction</h2>
<h2>Introduction</h2>
<p style="text-align:justify;">
<p style="text-align:justify;">
-
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus. Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue. Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc.  
+
Our modeling part consists of two main parts:
 +
<ul>
 +
<li>The mathematical modeling of <a href="https://2010.igem.org/Team:Freiburg_Bioware/Modeling/Virus_Production"><b>virus production</b></a> and <a href="https://2010.igem.org/Team:Freiburg_Bioware/Modeling/Virus_Infection"><b>infection</b></a> based on a model of ordinary differential equations (ODE).
 +
<li>The modeling of the <a href="https://2010.igem.org/Team:Freiburg_Bioware/Modeling/Structure_Modeling"><b>three dimensional structure</b></a> of the virus capsid based on X-ray crystallography data.
 +
</ul>
 +
<br>
 +
The first model describes the dynamic behavior of the virus production in terms of the law of mass action (Sidorenko & Reichl 2004). Therefore the temporal changes in concentrations of titrated plasmids, synthesized proteins, replicated single-stranded DNA and formed virus capsids and finally concentration of viral particles are simulated using MathWorks® MATLAB R2010b.<br>
 +
Virus infection is modeled in a similar way but receptor binding has to be considered (Gurevich 2004). Starting with a given concentration of infectious virus particles, complexes with dimerized receptors emerge which can be internalized to the cytoplasm and transduction takes place.<br>
 +
The third part follows a different approach: X-ray crystallography data (Xie et al. 2002) has been used to reproduce the three dimensional structure of the virus. The resulting 3D visualization is obtained by using the open source software PyMOL (Schrödinger 2010).<br>
 +
<br>
 +
Click on the pictures below to get to the corresponding modeling pages!
</p>
</p>
<table>
<table>
Line 16: Line 26:
<tr>
<tr>
-
<td halign="center" valign="top" width="300"><div class="box box_full">
+
<td halign="center" valign="top" width="300">
<a
<a
href="https://2010.igem.org/Team:Freiburg_Bioware/Modeling/Virus_Production">
href="https://2010.igem.org/Team:Freiburg_Bioware/Modeling/Virus_Production">
Line 26: Line 36:
src="https://static.igem.org/mediawiki/2010/c/c0/Freiburg10_VirusProductionLogo.png"
src="https://static.igem.org/mediawiki/2010/c/c0/Freiburg10_VirusProductionLogo.png"
alt="Virus Production Modeling" width="300"></a></div>
alt="Virus Production Modeling" width="300"></a></div>
-
</div></td>
+
</td>
<td halign="center" valign="top" width="290">
<td halign="center" valign="top" width="290">
<a
<a
Line 54: Line 64:
<br>
<br>
<br>
<br>
-
<h2>Literature</h2>
+
<h2>References</h2>
 +
<br>
 +
<h3>Mathematical Modeling</h3>
<ul>
<ul>
-
<li>Briggs, G. E., & Haldane, J. B. (1925) A Note on the Kinetics of Enzyme Action, Biochem J 19, 338-339.
+
<li>Bartlett, J.S., Wilcher, R. & Samulski, R.J., 2000. Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. Journal of virology, 74(6), pp.2777-85. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=111768&tool=pmcentrez&rendertype=abstract.
<li>Culshaw, R. V., Ruan, S., & Webb, G. (2003). A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay. Journal of mathematical biology, 46(5), 425-44. Springer Berlin / Heidelberg. doi: 10.1007/s00285-002-0191-5.
<li>Culshaw, R. V., Ruan, S., & Webb, G. (2003). A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay. Journal of mathematical biology, 46(5), 425-44. Springer Berlin / Heidelberg. doi: 10.1007/s00285-002-0191-5.
<li>Endres, D., & Zlotnick, A. (2002). Model-Based Analysis of Assembly Kinetics for Virus Capsids or Other Spherical Polymers. Biophysical Journal, 83(2), 1217-1230. Elsevier. doi: 10.1016/S0006-3495(02)75245-4.
<li>Endres, D., & Zlotnick, A. (2002). Model-Based Analysis of Assembly Kinetics for Virus Capsids or Other Spherical Polymers. Biophysical Journal, 83(2), 1217-1230. Elsevier. doi: 10.1016/S0006-3495(02)75245-4.
-
<li>Endy, D., Kong, D., & Yin, J. (1997). Intracellular Kinetics of a Growing Virus : A Genetically Structured Simulation for Bacteriophage T7. Biotechnology, 7.
 
<li>Friedman, A. (2006). Cancer Models and Their Mathematical Analysis. Cancer, 246, 223- 246.
<li>Friedman, A. (2006). Cancer Models and Their Mathematical Analysis. Cancer, 246, 223- 246.
<li>Gurevich, K. G. (2004). Application of methods of identifying receptor binding models and analysis of parameters. Theoretical biology & medical modelling, 1, 11. doi: 10.1186/1742-4682-1-11.
<li>Gurevich, K. G. (2004). Application of methods of identifying receptor binding models and analysis of parameters. Theoretical biology & medical modelling, 1, 11. doi: 10.1186/1742-4682-1-11.
Line 66: Line 77:
<li>Moradpour, D., Penin, F., & Rice, C. M. (2007). Replication of hepatitis C virus. Nature, 5(June), 453-463. doi: 10.1038/nrmicro1645.
<li>Moradpour, D., Penin, F., & Rice, C. M. (2007). Replication of hepatitis C virus. Nature, 5(June), 453-463. doi: 10.1038/nrmicro1645.
<li>Novozhilov, A. S., Berezovskaya, F. S., Koonin, E. V., & Karev, G. P. (2006). Mathematical modeling of tumor therapy with oncolytic viruses: regimes with complete tumor elimination within the framework of deterministic models. Biology direct, 1, 6. doi: 10.1186/1745-6150-1-6.
<li>Novozhilov, A. S., Berezovskaya, F. S., Koonin, E. V., & Karev, G. P. (2006). Mathematical modeling of tumor therapy with oncolytic viruses: regimes with complete tumor elimination within the framework of deterministic models. Biology direct, 1, 6. doi: 10.1186/1745-6150-1-6.
 +
<li>Seisenberger, G. et al., 2001. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science (New York, N.Y.), 294(5548), pp.1929-32. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11729319.
<li>Sidorenko, Y., & Reichl, U. (2004). Structured Model of Influenza Virus Replication in MDCK Cells. Biotechnology and Bioengineering, 88, 1-14. doi: 10.1002/bit.20096.
<li>Sidorenko, Y., & Reichl, U. (2004). Structured Model of Influenza Virus Replication in MDCK Cells. Biotechnology and Bioengineering, 88, 1-14. doi: 10.1002/bit.20096.
<li>Sweeney, B., Zhang, T., & Schwartz, R. (2008). Exploring the Parameter Space of Complex Self-Assembly through Virus Capsid Models. Biophysical Journal, 94(3), 772-783. Elsevier. doi: 10.1529/biophysj.107.107284.
<li>Sweeney, B., Zhang, T., & Schwartz, R. (2008). Exploring the Parameter Space of Complex Self-Assembly through Virus Capsid Models. Biophysical Journal, 94(3), 772-783. Elsevier. doi: 10.1529/biophysj.107.107284.
Line 73: Line 85:
<li>Zlotnick, Adam. (1997). To Build a Virus Capsid. Journal of molecular biology.
<li>Zlotnick, Adam. (1997). To Build a Virus Capsid. Journal of molecular biology.
</ul>
</ul>
-
 
+
<br>
-
 
+
<h3>Structure Modeling</h3>
 +
<ul>
 +
<li>Schrödinger, L., 2010. The {PyMOL} Molecular Graphics System, Version~1.3r1.
 +
<li>Xie, Q. et al., 2002. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 99(16), pp.10405-10. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=124927&tool=pmcentrez&rendertype=abstract.
 +
<li>Xie, Q. et al., 2003. Structure determination of adeno-associated virus 2: three complete virus particles per asymmetric unit. Acta Crystallographica Section D Biological Crystallography, 59(6), pp.959-970. Available at: http://scripts.iucr.org/cgi-bin/paper?S0907444903005675.
 +
</ul>
</html>
</html>
{{:Team:Freiburg_Bioware/Footer}}
{{:Team:Freiburg_Bioware/Footer}}

Latest revision as of 01:24, 28 October 2010

Modeling



Introduction

Our modeling part consists of two main parts:


The first model describes the dynamic behavior of the virus production in terms of the law of mass action (Sidorenko & Reichl 2004). Therefore the temporal changes in concentrations of titrated plasmids, synthesized proteins, replicated single-stranded DNA and formed virus capsids and finally concentration of viral particles are simulated using MathWorks® MATLAB R2010b.
Virus infection is modeled in a similar way but receptor binding has to be considered (Gurevich 2004). Starting with a given concentration of infectious virus particles, complexes with dimerized receptors emerge which can be internalized to the cytoplasm and transduction takes place.
The third part follows a different approach: X-ray crystallography data (Xie et al. 2002) has been used to reproduce the three dimensional structure of the virus. The resulting 3D visualization is obtained by using the open source software PyMOL (Schrödinger 2010).

Click on the pictures below to get to the corresponding modeling pages!

Virus Production Model


Virus Production Modeling

Virus Infection Model


Virus Infection Modeling

Structure Modeling


Structure Modeling


References


Mathematical Modeling

  • Bartlett, J.S., Wilcher, R. & Samulski, R.J., 2000. Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. Journal of virology, 74(6), pp.2777-85. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=111768&tool=pmcentrez&rendertype=abstract.
  • Culshaw, R. V., Ruan, S., & Webb, G. (2003). A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay. Journal of mathematical biology, 46(5), 425-44. Springer Berlin / Heidelberg. doi: 10.1007/s00285-002-0191-5.
  • Endres, D., & Zlotnick, A. (2002). Model-Based Analysis of Assembly Kinetics for Virus Capsids or Other Spherical Polymers. Biophysical Journal, 83(2), 1217-1230. Elsevier. doi: 10.1016/S0006-3495(02)75245-4.
  • Friedman, A. (2006). Cancer Models and Their Mathematical Analysis. Cancer, 246, 223- 246.
  • Gurevich, K. G. (2004). Application of methods of identifying receptor binding models and analysis of parameters. Theoretical biology & medical modelling, 1, 11. doi: 10.1186/1742-4682-1-11.
  • Johnston, I. G., Louis, A. A., & Doye, J. P. K. (2010). Modelling the self-assembly of virus capsids. Journal of Physics: Condensed Matter, 22(10), 104101. doi: 10.1088/0953-8984/22/10/104101.
  • Komarova, N. L., & Wodarz, D. (2010). ODE models for oncolytic virus dynamics. Journal of Theoretical Biology, 263(4), 530-543. Elsevier. doi: 10.1016/j.jtbi.2010.01.009.
  • Moradpour, D., Penin, F., & Rice, C. M. (2007). Replication of hepatitis C virus. Nature, 5(June), 453-463. doi: 10.1038/nrmicro1645.
  • Novozhilov, A. S., Berezovskaya, F. S., Koonin, E. V., & Karev, G. P. (2006). Mathematical modeling of tumor therapy with oncolytic viruses: regimes with complete tumor elimination within the framework of deterministic models. Biology direct, 1, 6. doi: 10.1186/1745-6150-1-6.
  • Seisenberger, G. et al., 2001. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science (New York, N.Y.), 294(5548), pp.1929-32. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11729319.
  • Sidorenko, Y., & Reichl, U. (2004). Structured Model of Influenza Virus Replication in MDCK Cells. Biotechnology and Bioengineering, 88, 1-14. doi: 10.1002/bit.20096.
  • Sweeney, B., Zhang, T., & Schwartz, R. (2008). Exploring the Parameter Space of Complex Self-Assembly through Virus Capsid Models. Biophysical Journal, 94(3), 772-783. Elsevier. doi: 10.1529/biophysj.107.107284.
  • Tao, Y., & Guo, Q. (2005). The competitive dynamics between tumor cells, a replication-competent virus and an immune response. Journal of mathematical biology, 51(1), 37-74. doi: 10.1007/s00285-004-0310-6.
  • Wu, J T, Byrne, H. M., Kirn, D H, & Wein, L M. (2001). Modeling and analysis of a virus that replicates selectively in tumor cells. Bulletin of mathematical biology, 63(4), 731-68. doi: 10.1006/bulm.2001.0245.
  • Wu, Joseph T, Kirn, David H, & Wein, Lawrence M. (2004). Analysis of a three-way race between tumor growth, a replication-competent virus and an immune response. Bulletin of mathematical biology, 66(4), 605-25. doi: 10.1016/j.bulm.2003.08.016.
  • Zlotnick, Adam. (1997). To Build a Virus Capsid. Journal of molecular biology.

Structure Modeling

  • Schrödinger, L., 2010. The {PyMOL} Molecular Graphics System, Version~1.3r1.
  • Xie, Q. et al., 2002. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 99(16), pp.10405-10. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=124927&tool=pmcentrez&rendertype=abstract.
  • Xie, Q. et al., 2003. Structure determination of adeno-associated virus 2: three complete virus particles per asymmetric unit. Acta Crystallographica Section D Biological Crystallography, 59(6), pp.959-970. Available at: http://scripts.iucr.org/cgi-bin/paper?S0907444903005675.