Team:Paris Liliane Bettencourt/Project/Memo-cell/References

From 2010.igem.org

Revision as of 00:07, 28 October 2010 by Theotime (Talk | contribs)


Memo-Cell project





Microcin

Fomenko, DE, Metlitskaya, AZ, Péduzzi, J, Goulard, C, Katrukha, GS, Gening, LV, Rebuffat, S, Khmel, IA: Microcin C51 plasmid genes: possible source of horizontal gene transfer. Antimicrob Agents Chemother 2003, 47:2868-2874

Metlitskaya, A, Kazakov, T, Vondenhoff, GH, Novikova, M, Shashkov, A, Zatsepin, T, Semenova, E, Zaitseva, N, Ramensky, V, Van Aerschot, A, Severinov, K: Maturation of the translation inhibitor microcin C. J Bacteriol 2009, 191:2380-2387

Novikova, M, Kazakov, T, Vondenhoff, GH, Semenova, E, Rozenski, J, Metlytskaya, A, Zukher, I, Tikhonov, A, Van Aerschot, A, Severinov, K: MccE provides resistance to protein synthesis inhibitor microcin C by acetylating the processed form of the antibiotic. J Biol Chem 2010, 285:12662-12669

Transposase

Abbani, M, Iwahara, M, Clubb, RT: The structure of the excisionase (Xis) protein from conjugative transposon Tn916 provides insights into the regulation of heterobivalent tyrosine recombinases. J Mol Biol 2005, 347:11-25

Caparon, MG, Scott, JR: Excision and insertion of the conjugative transposon Tn916 involves a novel recombination mechanism. Cell 1989, 59:1027-1034

Celli, J, Trieu-Cuot, P: Circularization of Tn916 is required for expression of the transposon-encoded transfer functions: characterization of long tetracycline-inducible transcripts reading through the attachment site. Molecular Microbiology 1998, 28:103-117

Clewell, DB, Flannagan, SE, Ike, Y, Jones, JM, Gawron-Burke, C: Sequence analysis of termini of conjugative transposon Tn916. The Journal of Bacteriology 1988, 170:3046-3052

Clewell, DB, Flannagan, SE, Jaworski, DD: Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol 1995, 3:229-236

Connolly, KM, Iwahara, M, Clubb, RT: Xis protein binding to the left arm stimulates excision of conjugative transposon Tn916. J Bacteriol 2002, 184:2088-2099

Devirgiliis, C, Coppola, D, Barile, S, Colonna, B, Perozzi, G: Characterization of the Tn916 conjugative transposon in a food-borne strain of Lactobacillus paracasei. Appl Environ Microbiol 2009, 75:3866-3871

Geist, RT, Okada, N, Caparon, MG: Analysis of Streptococcus pyogenes promoters by using novel Tn916-based shuttle vectors for the construction of transcriptional fusions to chloramphenicol acetyltransferase. J Bacteriol 1993, 175:7561-7570

Jaworski, DD, Flannagan, SE, Clewell, DB: Analyses of traA, int-Tn, and xis-Tn mutations in the conjugative transposon Tn916 in Enterococcus faecalis. Plasmid 1996, 36:201-208

Lu, F, Churchward, G: Conjugative transposition: Tn916 integrase contains two independent DNA binding domains that recognize different DNA sequences. EMBO J 1994, 13:1541-1548

Lu, F, Churchward, G: Tn916 target DNA sequences bind the C-terminal domain of integrase protein with different affinities that correlate with transposon insertion frequency. J Bacteriol 1995, 177:1938-1946

Manganelli, R, Ricci, S, Pozzi, G: Conjugative transposon Tn916: evidence for excision with formation of 5’-protruding termini. J Bacteriol 1996, 178:5813-5816

Marra, D, Pethel, B, Churchward, GG, Scott, JR: The frequency of conjugative transposition of Tn916 is not determined by the frequency of excision. J Bacteriol 1999, 181:5414-5418

Marra, D, Scott, JR: Regulation of excision of the conjugative transposon Tn916. Molecular Microbiology 1999, 31:609-621

Marra, D, Smith, JG, Scott, JR: Excision of the conjugative transposon Tn916 in Lactococcus lactis. Appl Environ Microbiol 1999, 65:2230-2231

Pethel, B, Churchward, G: Coupling sequences flanking Tn916 do not determine the affinity of binding of integrase to the transposon ends and adjacent bacterial DNA. Plasmid 2000, 43:123-129

Poyart-Salmeron, C, Trieu-Cuot, P, Carlier, C, Courvalin, P: Molecular characterization of two proteins involved in the excision of the conjugative transposon Tn1545: homologies with other site-specific recombinases. EMBO J 1989, 8:2425-2433

Rudy, C, Taylor, KL, Hinerfeld, D, Scott, JR, Churchward, G: Excision of a conjugative transposon in vitro by the Int and Xis proteins of Tn916. Nucleic Acids Res 1997, 25:4061-4066

Rudy, CK, Scott, JR: Length of the coupling sequence of Tn916. J Bacteriol 1994, 176:3386-3388

Rudy, CK, Scott, JR, Churchward, G: DNA binding by the Xis protein of the conjugative transposon Tn916. J Bacteriol 1997, 179:2567-2572

Salyers, AA, Shoemaker, NB, Stevens, AM, Li, LY: Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol Rev 1995, 59:579-590

Taylor, KL, Churchward, G: Specific DNA cleavage mediated by the integrase of conjugative transposon Tn916. J Bacteriol 1997, 179:1117-1125

Integrase

Numrych, TE, Gumport, RI, Gardner, JF: A genetic analysis of Xis and FIS interactions with their binding sites in bacteriophage lambda. J Bacteriol 1991, 173:5954-5963

Bauer, CE, Gardner, JF, Gumport, RI: Extent of sequence homology required for bacteriophage lambda site-specific recombination. J Mol Biol 1985, 181:187-197

Gottfried, P, Kolot, M, Yagil, E: The effect of mutations in the Xis-binding sites on site-specific recombination in coliphage HK022. Mol Genet Genomics 2001, 266:584-590

Nagaraja, R, Weisberg, RA: Specificity determinants in the attachment sites of bacteriophages HK022 and lambda. J Bacteriol 1990, 172:6540-6550

Abremski, K, Gottesman, S: Site-specific recombination Xis-independent excisive recombination of bacteriophage lambda. J Mol Biol 1981, 153:67-78

Hsu, PL, Ross, W, Landy, A: The lambda phage att site: functional limits and interaction with Int protein. Nature 1980, 285:85-91

Juhala, RJ, Ford, ME, Duda, RL, Youlton, A, Hatfull, GF, Hendrix, RW: Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J Mol Biol 2000, 299:27-51

Groth, AC, Calos, MP: Phage integrases: biology and applications. J Mol Biol 2004, 335:667-678

Dorgai, L, Sloan, S, Weisberg, RA: Recognition of core binding sites by bacteriophage integrases. J Mol Biol 1998, 277:1059-1070

Gottfried, P, Silberstein, N, Yagil, E, Kolot, M: Activity of coliphage HK022 excisionase (Xis) in the absence of DNA binding. FEBS Lett 2003, 545:133-138

Gardner, JF, Nash, HA: Role of Escherichia coli IHF protein in lambda site-specific recombination. A mutational analysis of binding sites. J Mol Biol 1986, 191:181-189

Numrych, TE, Gumport, RI, Gardner, JF: A comparison of the effects of single-base and triple-base changes in the integrase arm-type binding sites on the site-specific recombination of bacteriophage lambda. Nucleic Acids Res 1990, 18:3953-3959

Rajeev, L, Malanowska, K, Gardner, JF: Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol Mol Biol Rev 2009, 73:300-309

Papagiannis, CV, Sam, MD, Abbani, MA, Yoo, D, Cascio, D, Clubb, RT, Johnson, RC: Fis targets assembly of the Xis nucleoprotein filament to promote excisive recombination by phage lambda. J Mol Biol 2007, 367:328-343

Zhang, L, Wang, L, Wang, J, Ou, X, Zhao, G, Ding, X: DNA Cleavage is Independent of Synapsis during Streptomyces Phage φBT1 Integrase-Mediated Site-Specific Recombination. Journal of Molecular Cell Biology 2010, 2:264

Tucker, WC, Du, Z, Gromet‐Elhanan, Z, Richter, ML: Formation and properties of hybrid photosynthetic F1‐ATPases. European Journal of Biochemistry 2001, 268:2179-2186

Radman-Livaja, M, Biswas, T, Ellenberger, T, Landy, A, Aihara, H: DNA arms do the legwork to ensure the directionality of lambda site-specific recombination. Curr Opin Struct Biol 2006, 16:42-50