Team:Macquarie Australia/References

From 2010.igem.org

Revision as of 09:12, 17 October 2010 by Ollie (Talk | contribs)

Further Reading and Related Articles

1. Bhoo, S. H., Davis, S. J., Walker, J., Karniol, B., Vierstra, R. D. (2001). Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature, 414, 776-779.

2. Davis, S.J., Vener, A.V. and Vierstra, R.D. (1999). Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science, 286(5449), 2517-20.

3. Essen, L. O., Mailliet, J., Hughes, J. (2008). The structure of a complete phytochrome sensory module in the Pr ground state. Proceedings of the National Academy of Sciences, 105, 14709-14714.

4. Fankhauser, C. (2000). Phytochromes as light-modulated protein kinases. Cell & Developmental Biology, 11, 467–473.

5. Froger, A. H., J. (2007). Transformation of plasmid DNA into E. coli using the heat shock method. Journal of Visualized Experiments, 6, 253.

6. Giraud, R., Zappa, S., Jaubert, M., Hannibal, L., Fardoux, J., Adriano, J., Bouyer, P., Genty, B., Pignol, D., & Verméglio, A. (2004). Bacteriophytochrome and regulation of the synthesis of the photosynthetic apparatus in Rhodopseudomonas palustris: pitfalls of using laboratory strains. Photochemistry and Photobiology, 3, 587–591.

7. Jaubert, M., Lavergne, J., Fardoux, J., Hannibal, L., et al. (2007). A singular bacteriophytochrome acquired by lateral gene transfer. J Biol Chem, 282, 7320-7328.

8. Karniol, B,. & Vierstra, R.(2003). The pair of bacteriophytochromes from Agrobacterium tumefaciens are histidine kinases with opposing photobiological properties. Proceedings of the National Academy of Sciences, 100(5), 2807-2812.

9. Kim, C. Y., Kang, E. S., Kim, S. B., Kim, H. E., et al. (2008). Increased in vivo immunological potency of HB-110, a novel therapeutic HBV DNA vaccine, by electroporation. Exp Mol Med, 40, 669-676.

10. Lamparter, T., Michael, N., Caspani, O., Miyata, T., Shirai, K., & Inomata, K. (2003). Biliverdin Binds Covalently to Agrobacterium Phytochrome Agp1 via Its Ring A Vinyl Side Chain. The Journal of Biological Chemistry, 278(36), 33786–33792.

11. Leivar, P., Monte, E., Oka, Y., Liu, T., Carle, C., Castillon, A., Huq, E., & Quail, P. (2008). Multiple Phytochrome-Interacting bHLH Transcription Factors Repress Premature Seedling Photomorphogenesis in Darkness. Current Biology, 18(23), 1815 – 1823.

12. Li, H., Zhang, J. & Vierstra, R.D. (2010). Quaternary organization of a phytochrome dimer as revealed by cryoelectron microscopy. Proceedings of the National Academy of Sciences, 107(24),10872-10877.

13. Murgida, D., Stetten, D., Hildebrandt, P., Schwinte, P., Siebert,F., Sharda, S., Gartner, W., & Mroginski, M.(2007). The Chromophore Structures of the Pr States in Plant and Bacterial Phytochromes. Biophysical Journal, 93, 2410–2417.

14. Pae, H., & Chung, H. (2009). Heme Oxygenase-1: Its Therapeutic Roles in Inflammatory Diseases. Immune Network, 13-19.

15. Park, C., Kim, J., Yang, S., Kang, J., Kang , J., Shim, J., Chung, Y., Park, Y., & Song P. (2000). A second photochromic bacteriophytochrome from Synechocystis sp. PCC 6803: spectral analysis and down-regulation by light. Biochemistry, 39(35), 10840-10847.

16. Piwowarski, P., Ritter, E., Hofmann, K. P., Hildebrandt, P., et al. (2010). Light-induced activation of bacterial phytochrome Agp1 monitored by static and time-resolved FTIR spectroscopy. Chemphyschem, 11, 1207-1214.

17. Purcell, E.B. and Crosson, S., (2008). Photoregulation in prokaryotes. Current Opinions in Microbiology, 11(2), 168-78.

18. Quail, P. (2010). Phytochromes. Current Biology, 20(12), 504-507.

19. Quest, B., Hubschmann, T., Sharda, S., Tandeau de Marsac, N., Gartner, W. (2007). Homologous expression of a bacterial phytochrome. The cyanobacterium Fremyella diplosiphon incorporates biliverdin as a genuine, functional chromophore. Federation of European Biochemical Societies, 274, 2088-2098.

20. Rockwell, N. C., Shang, L., Martin, S. S., Lagarias, J. C. (2009). Distinct classes of red/far-red photochemistry within the phytochrome superfamily. . Proceedings of the National Academy of Sciences, 106, 6123-6127.

21. Rosenberg, A.H., Lade B.N., Chui D.S., Lin S.W., Dunn J.J., Studier F.W. (1987). Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene, 56(1), 125-35.

22. Sharrock, R.A. (2008). The phytochrome red/far-red photoreceptor superfamily. Genome Biology, 9(8), 230.

23. Schmidt, P., Westphal, U., Worm, K., Braslavsky, S., Girtner, W., & Schaffner, K. (1996). Chromophore-protein interaction controls the complexity of the phytochrome photocycle. Journal of Photochemistry and Photobiology, 34, 73-77.

24. Shu, X., Royant, A., Lin, M. Z., Aguilera, T. A., et al. (2009). Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science, 324, 804-807.

25. Taiz, L., & Zeiger, E. (2002). Plant Physiology (4th ed). Sinauer Associates, Inc.

26. Tarutina, T., Ryjenkov, D., & Gomelsky, M. (2006). An Unorthodox Bacteriophytochrome from Rhodobacter sphaeroides Involved in Turnover of the Second Messenger c-di-GMP. The Journal of Biological Chemistry, 281(46), 34751–34758.

27. Tepperman, J., Zhu, T., Chang, H., Wang, X, & Quail, P. (2001). Multiple transcription-factor genes are early targets of phytochrome A signaling. Proceedings of the National Academy of Sciences, 98(16), 9437-9442.

28. Vuillet, L., Kojadinovic, M., Zappa, S., Jaubert, M., et al. (2007). Evolution of a bacteriophytochrome from light to redox sensor. The EMBO Journal, 26, 3322-3331.

29. Wagner, J., Zhang, J., Brunzelle, J., Vierstra, R., & Forest, K. (2007). High Resolution Structure of Deinococcus Bacteriophytochrome Yields New Insights into Phytochrome Architecture and Evolution. The Journal of Biological Chemistry, 282(16), 12298–12309.

30. Watson, J. (2000). Light and Protein Kinases. Advances in Botanical Research, 32, 149-170.

31. Yang, X., Stojkovic´, E., Kuk, J., & Moffat, K. (2007). Crystal structure of the chromophore binding domain of an unusual bacteriophytochrome, RpBphP3, reveals residues that modulate photoconversion. Proceedings of the National Academy of Sciences, 104(30), 12571–12576.