Team:Paris Liliane Bettencourt
From 2010.igem.org
(div frame) |
|||
Line 1: | Line 1: | ||
{{Template:paris2010_2}} | {{Template:paris2010_2}} | ||
- | |||
- | |||
- | |||
- | |||
==Abstract== | ==Abstract== | ||
Line 17: | Line 13: | ||
<html> | <html> | ||
- | |||
</div> | </div> | ||
</html> | </html> |
Revision as of 11:46, 22 October 2010
Abstract
Counting is the action of finding the number of elements in a set. Past attempts at developing counters in cells have mostly attempted to mimic the binary methods that computers use to count.
Our first counter takes a new approach to counting in cells, essentially a mechanical rotary counter implemented on a micro scale. Each time the counter detects an input, it performs an excision and integration directly down-stream of the active site, turning on a reporter and rotating over one "notch" on the counter.
Our second counter operates on the wholly different principle that the statistical occurrence of a rare event in a large population can be modeled. Each cell in our population harbors a construct that when stimulated has a small chance of excising a terminator and expressing a resistance gene. The number of resistant cells is thus an accurate count of the number of input stimuli.