Team:Washington/Gram Positive/Test

From 2010.igem.org

(Difference between revisions)
(Characterization of best hits)
 
(121 intermediate revisions not shown)
Line 1: Line 1:
 +
__NOTOC__
{{Template:Team:Washington/Templates/Header}}
{{Template:Team:Washington/Templates/Header}}
<html>
<html>
Line 25: Line 26:
<!---------------------------------------PAGE CONTENT GOES BELOW THIS---------------------------------------->
<!---------------------------------------PAGE CONTENT GOES BELOW THIS---------------------------------------->
-
'''More descriptive titles, verification that your CapD_CP was a monomer ( gel) should go before testing catalytic ability'''
 
-
==Why CapD_CP?==
+
=Construction of CapD_CP=
-
==Easy Quantification==
+
==CapD_CP runs on a gel as one clean band==
-
[[Image:CapDandCapDCPGell.jpg|thumb|400px|right| CapD_CP as expected.  Right: CapD has ambiguous bands, making quantifying difficult and assaying protein activity less accurate]]
+
-
In addition to the fact that CapD_CP is easy to express, it has one more crucial advantage over CapD.  When purifying CapD_CP, given our mass spec data, we can assume a massive majority of the purified CapD_CP is functional.  CapD, however, is a much more ambiguous case, as illustrated by our protein gel results.  The lower two bands of CapD correspond to the two subunits of cleaved CapD, which are active.  The upper band may be uncleaved, therefore unfunctional, CapD, or dimeric, active CapD that simply did not denature, or a combination of both.  Because of this, its difficult to quantify how much active protein is in a solution of purified CapD, making assaying activity a nightmare.  For this reason, we made our active site mutations to CapD_CP.
+
-
[[Image:CapDCP_MassSpecNoMethionine.png|thumb|780px|right| Expected weight of CapD_CP without Methionine=55285Da, with Methionine=55417Da. Our mass spec detected a peak at 55274.8Da (no Methionine) well within the 0.02% error limit for our mass spec]]
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
==Unchanged Properties==
+
[[Image:CapDandCapDCPGell.jpg|480px|left|thumb|'''Figure 1.  CapD_CP as expected.  Right: CapD has ambiguous bands, making quantifying difficult and assaying protein activity less accurate
-
[[Image:Washington_CapD_CapD_CP.jpg|thumb|400px|right|]]
+
''']]
-
=='''Test: Enzyme Assay'''==
 
-
[[Image:Washington_Assay_Scheme_revised2.jpg|thumb|400px|left|The general scheme of our fluorescence-based [https://2010.igem.org/Team:Washington/Protocols/EnzymeAssayCapD enzyme assay]]]
+
Depicted in Figure 1 is a gel comparing purified CapD and CapD_CP. This demonstrates one of the major advantages of CapD_CP,in addition to the fact that it is easy to express, it comes out in one clean band and is easy to quantify.  
-
After we have the CapD_CP mutants, we tested our mutants for their catalytic activity using our fluorescence-based enzyme assay scheme. Fluorescence-based enzyme assay measures the rate at which fluorescence in the testing media is released and the amount fluorescence depends on the rate at which fluorophore-quencher linkage is disrupted. Our substrate PDGA contains a linked fluorophore-quencher component. The faster fluorophore-quencher component is cleaved, the higher the amount of fluorescence is released and thus the greater the enzymatic activity observed.
 
-
=='''Results: Data Analysis'''==
+
CapD shows three bands, while the lower two bands are the expected pieces that occur after the enzyme undergoes self cleavage, the upper band is of unclear origin. Its mass corresponds to what would either be the unprocessed, inactive and monomeric form of the enzymes or the dimeric form that didn't denature. This ambiguity makes the amount of active CapD enzyme difficult to quantify.
-
===Validating CapD_CP Activity===
+
-
Before we can predict which mutations increase hydrolysis capability, we need to validate that the circularly permuted version of CapD has measurable activity for further assessments. We also hypothesize a threonine residue in the catalytic site of CapD_CP plays an important role in the catalysis reaction and mutating it will eliminate all enzymatic activity. Thus we created two mutants, T2V and T2A, to act as negative controls. The result (figure 1 below) of this assay confirms our hypothesis that CapD_CP has enzymatic activity to the two catalytic knockouts. The relatively flat activity curves of the knockout mutants confirm the hypothesis of the threonine's role in the catalytic site.  
+
-
[[Image:Washington_Confirming_CP_activity_revised5.jpg|thumb|750px|left|Figure 1: Confirming the activity of CapD_CP by comparing it to two CapD_CP knockouts, T2A and T2V.different graphic is coming]]
 
-
=='''Analyzing CapD_CP'''==
+
<br style="clear: both" />
-
[[Image:Washington_CapD_CP_Trans_Hydro_Kinectic_Table_full.jpg|thumb|400px|right|Figure 4 shows the kinetic constants of CapD_CP's transpeptidation and hydrolysis capability]]
+
==CapD_CP is expressed at EXACTLY the correct molecular weight==
-
[[Image:Washington_CapD_CP_Michaelis_Curve.jpg|thumb|300px|right|]]
+
In Figure 2 (below) we show the mass spec conformation of the molecular weight of CapD_CP.  As expected, the N-terminal methionine is cleaved off by the native E. coli methionine aminopeptidase, resulting in a high level of pure active enzyme.
-
The two abilities of CapD_CP are transpeptidation and hydrolysis. Based on the Kcat and Km (see figure 4)
+
[[Image:CapDCP_MassSpecNoMethionine.png|600px|left|thumb|''' Figure 2.  Expected weight of CapD_CP without Methionine=55285Da, with Methionine=55417Da. Our mass spec detected a peak at 55274.8Da (no Methionine) well within the 0.02% error limit for our mass spec''']]
-
values of the two, we conclude that CapD_CP is a weak binder and efficient catalyst for the transpeptidation reaction. In terms of  hydrolysis, it shows strong binding but slow catalysis, thus our mutant designs focus on increasing the catalytic efficiency.
+
<br style="clear: both" />
 +
==The circular permutation didn't result in a loss of activity==
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
<br />
 
-
=='''Mutant Designs'''==
 
-
By standardizing the activity slope of each design relative to CapD_CP, a scatterplot easily portrays the qualities of each mutant. Several designs show negative catalytic curves similar to the catalytic knockouts. Some immediately show a negative activity curve meaning decrease in transpeptidation, hydrolysis, or both. T20S is a promising mutant hydrolase design.
 
-
[[Image:Washington_Mutant_design.jpg|thumb|400px|right|]]
+
In the table 1 (below), we show the kinetic paramters for CapD and CapD_CP as determined using our [https://2010.igem.org/Team:Washington/Protocols/EnzymeAssayCapD| enzyme assay].
 +
Due to the heterogenous mix of active (processed) and inactive (unprocessed) protein, the kcat is difficult to quantify.  The data we obtained suggests that the kinetic parameters of CapD and CapD_CP are within error of each other.  Therefore the circular permutation of CapD did not have a negative effect on catalytic activity, suggesting that auto-processing is not required for catalysis but simply a regulatory feature.
 +
 
 +
[[Image:Washington_CP_D_Constants.png|thumb|500px|center| '''Table 1. Kinetic properties determined for a Michaelis-Menten profile of CapD and CapD_CP, as described in our  protocols section.''']]
 +
 
 +
 
 +
<br style="clear: both" />
 +
 
 +
==Catalytic Residue knock-outs show that CapD_CP is catalyzing the reaction as expected==
 +
Before we could predict which mutations increase hydrolysis capability, we needed to validate that the circularly permuted version of CapD had measurable activity for further assessments. We also hypothesized a threonine residue in the catalytic site of CapD_CP plays an important role in the catalysis reaction and mutating it will eliminate all enzymatic activity. Thus using [https://2010.igem.org/Team:Washington/Project/Tools/FoldIt FoldIt ]we created two mutants, T2V and T2A, to act as negative controls and ran an [https://2010.igem.org/Team:Washington/Protocols/EnzymeAssayCapD enzyme assay] to confirm our hypothesis. The result shown in figure 3 (below) of this assay confirmed our hypothesis that CapD_CP has enzymatic activity compared to the two catalytic knockouts. The relatively flat activity curves of the knockout mutants confirmed the hypothesis of the threonine's role in the catalytic site.
 +
 
 +
[[Image:Washington_Confirming_CP_activity_revised7.jpg|thumb|750px|left|'''Figure 3: Confirming the activity of CapD_CP by comparing it to two CapD_CP knockouts, T2A and T2V.''']]
 +
<br style="clear: both" />
 +
 
 +
=Removing  CapD_CP Transpeptidase Activity=
 +
<span id = mutant>
 +
==Screening Mutant Libraries==
 +
By standardizing the activity slope of each design relative to CapD_CP, a scatterplot easily portrays the qualities of each mutant. Several designs show negative catalytic curves similar to the catalytic knockouts. Some immediately show a negative activity curve meaning decrease in transpeptidation, hydrolysis, or both. F24H is our most promising mutant hydrolase design.
 +
 
 +
[[Image:Washington_Mutant_design.jpg|thumb|750px|center|'''Figure 4.  Plot of the Transpeptidation vs. Hydrolysis, relative to the starting protein CapD_CP.  The goal is to remove as much transpeptidation activity as possible while maintaining or increasing hydrolysis activity.  This will allow the protein to break down (via the hydrolysis reaction) the protective coat without building it back up (via the transpeptidation reaction)''']]
 +
 
 +
[[Team:Washington/Gram_Positive/Test/MutantDataTable|Mutant activity relative to CapD_CP in table form]]
 +
<br style="clear: both" />
 +
 
 +
<span id = capH>
 +
 
 +
==Characterization of best hits==
 +
To further characterize the most promising mutant, F24H, we ran a Michaelis-Menten profile in order to obtain it's kinetic parameters and compare them to CapD.  In this case we ran our standard enzyme assay (5nM enzyme), but we varied the substrate from 1microM down to 0microM.  The resulting substrate vs. velocity curves for CapD_CP and the F24H variant are shown below.  Both enzymes showed canonical substrate inhibition trends, so the curve we fit them to was:  ''k''obs = (''k''cat * S0)/(Km+S0*(1+S0/Ki)).
 +
 
 +
[[Image:Washington_CP_F24H_MMCurves.png|thumb|700px|center|'''Figure 5.  Substrate vs. Velocity curves to determine the catalytic paramters if CapD_CP (left) and CapD_CP-F24H (right).''']]
 +
 
 +
[[Image:Washington_CP_F24H_Constants.png|thumb|400px|center|'''Table 2.  Kinetic parameters of CapD_CP vs. CapD_CP-F24H show that the mutant achieved the desired goal of having a minimal effect on hydrolysis activity (''k''cat), but has significantly reduced transpeptidation activity.''']]
 +
 
 +
<br style="clear: both" />
 +
</span>
 +
 
 +
==Summary==
 +
 
 +
These results show that our mutant has converted CapD_CP from an enzyme that strongly prefers transpeptidation into one that performs transpeptidation equally as well as it does hydrolysis.  The effects of this on anthrax need to be more thoroughly characterized, but that is beyond the scope of our project.  In addition, we hope to continue working on this project after the completion of iGEM in order to find additional variants that will start increasing hydrolysis activity.
 +
 
 +
 
 +
<br style="clear: both" />
 +
 
<!---------------------------------------PAGE CONTENT GOES ABOVE THIS---------------------------------------->
<!---------------------------------------PAGE CONTENT GOES ABOVE THIS---------------------------------------->
<div style="text-align:center">
<div style="text-align:center">
-
'''&larr; [[Team:Washington/Project/Baker/Build|Building the Gram(+) Therapeutic]]'''
+
'''&larr; [[Team:Washington/Gram Positive/Build|Building the Gram(+) Therapeutic]]'''
&nbsp;
&nbsp;
&nbsp;
&nbsp;
&nbsp;
&nbsp;
-
'''[[Team:Washington/Project/Mougous|Overview of Gram(-) Therapeutic]] &rarr;'''
+
'''[[Team:Washington/Tools Created|Overview of Tools We Created]] &rarr;'''
-
</div>
+
{{Template:Team:Washington/Templates/Footer}}
{{Template:Team:Washington/Templates/Footer}}

Latest revision as of 20:59, 27 October 2010


Construction of CapD_CP

CapD_CP runs on a gel as one clean band

Figure 1. CapD_CP as expected. Right: CapD has ambiguous bands, making quantifying difficult and assaying protein activity less accurate


Depicted in Figure 1 is a gel comparing purified CapD and CapD_CP. This demonstrates one of the major advantages of CapD_CP,in addition to the fact that it is easy to express, it comes out in one clean band and is easy to quantify.


CapD shows three bands, while the lower two bands are the expected pieces that occur after the enzyme undergoes self cleavage, the upper band is of unclear origin. Its mass corresponds to what would either be the unprocessed, inactive and monomeric form of the enzymes or the dimeric form that didn't denature. This ambiguity makes the amount of active CapD enzyme difficult to quantify.



CapD_CP is expressed at EXACTLY the correct molecular weight

In Figure 2 (below) we show the mass spec conformation of the molecular weight of CapD_CP. As expected, the N-terminal methionine is cleaved off by the native E. coli methionine aminopeptidase, resulting in a high level of pure active enzyme.

Figure 2. Expected weight of CapD_CP without Methionine=55285Da, with Methionine=55417Da. Our mass spec detected a peak at 55274.8Da (no Methionine) well within the 0.02% error limit for our mass spec


The circular permutation didn't result in a loss of activity

In the table 1 (below), we show the kinetic paramters for CapD and CapD_CP as determined using our enzyme assay. Due to the heterogenous mix of active (processed) and inactive (unprocessed) protein, the kcat is difficult to quantify. The data we obtained suggests that the kinetic parameters of CapD and CapD_CP are within error of each other. Therefore the circular permutation of CapD did not have a negative effect on catalytic activity, suggesting that auto-processing is not required for catalysis but simply a regulatory feature.

Table 1. Kinetic properties determined for a Michaelis-Menten profile of CapD and CapD_CP, as described in our protocols section.



Catalytic Residue knock-outs show that CapD_CP is catalyzing the reaction as expected

Before we could predict which mutations increase hydrolysis capability, we needed to validate that the circularly permuted version of CapD had measurable activity for further assessments. We also hypothesized a threonine residue in the catalytic site of CapD_CP plays an important role in the catalysis reaction and mutating it will eliminate all enzymatic activity. Thus using FoldIt we created two mutants, T2V and T2A, to act as negative controls and ran an enzyme assay to confirm our hypothesis. The result shown in figure 3 (below) of this assay confirmed our hypothesis that CapD_CP has enzymatic activity compared to the two catalytic knockouts. The relatively flat activity curves of the knockout mutants confirmed the hypothesis of the threonine's role in the catalytic site.

Figure 3: Confirming the activity of CapD_CP by comparing it to two CapD_CP knockouts, T2A and T2V.


Removing CapD_CP Transpeptidase Activity

Screening Mutant Libraries

By standardizing the activity slope of each design relative to CapD_CP, a scatterplot easily portrays the qualities of each mutant. Several designs show negative catalytic curves similar to the catalytic knockouts. Some immediately show a negative activity curve meaning decrease in transpeptidation, hydrolysis, or both. F24H is our most promising mutant hydrolase design.

Figure 4. Plot of the Transpeptidation vs. Hydrolysis, relative to the starting protein CapD_CP. The goal is to remove as much transpeptidation activity as possible while maintaining or increasing hydrolysis activity. This will allow the protein to break down (via the hydrolysis reaction) the protective coat without building it back up (via the transpeptidation reaction)

Mutant activity relative to CapD_CP in table form

Characterization of best hits

To further characterize the most promising mutant, F24H, we ran a Michaelis-Menten profile in order to obtain it's kinetic parameters and compare them to CapD. In this case we ran our standard enzyme assay (5nM enzyme), but we varied the substrate from 1microM down to 0microM. The resulting substrate vs. velocity curves for CapD_CP and the F24H variant are shown below. Both enzymes showed canonical substrate inhibition trends, so the curve we fit them to was: kobs = (kcat * S0)/(Km+S0*(1+S0/Ki)).

Figure 5. Substrate vs. Velocity curves to determine the catalytic paramters if CapD_CP (left) and CapD_CP-F24H (right).
Table 2. Kinetic parameters of CapD_CP vs. CapD_CP-F24H show that the mutant achieved the desired goal of having a minimal effect on hydrolysis activity (kcat), but has significantly reduced transpeptidation activity.


Summary

These results show that our mutant has converted CapD_CP from an enzyme that strongly prefers transpeptidation into one that performs transpeptidation equally as well as it does hydrolysis. The effects of this on anthrax need to be more thoroughly characterized, but that is beyond the scope of our project. In addition, we hope to continue working on this project after the completion of iGEM in order to find additional variants that will start increasing hydrolysis activity.




Building the Gram(+) Therapeutic       Overview of Tools We Created