Team:Debrecen-Hungary/minimals

From 2010.igem.org

Revision as of 19:58, 24 October 2010 by Peterbrazda (Talk | contribs)


Welcome To The Minimals

From year to year (and from one to jamboree to another) the world of synthetic biology exponentially expands. Some iGEMers may find niches of complex biological systems and use special model organisms or laboratory tools. Our philosophy is that a good project is one that can be kept simple and short.
Thus we found it prudent to provide our fellow iGEM teams from abroad with brief overviews of our project background (which we call “the minimals”). Our hope is that it may clear some of the molecular “mish mash” you may be experiencing and help point you in the right direction for a complete understanding of our project.


Contents

Essentials Of Lipid Sensing

Cellular signaling - Nuclear Receptors - Ligand binding domains

Model Organisms

Drosophila Melanogaster - Caenorhabditis elegans - Homo sapiens

In The Laboratory (Techniques And Reagents)

Two hybrid screening - Luciferase - Cos-1 cells - Dose response curve

Essentials Of Lipid Sensing

Cellular signaling

Cells have an innate ability to “listen” and correctly react to their local or even distant environment. Through time it has been observed that a complex systems of communication governs essential cellular activates and coordinates cell actions.[1] Today, it is well known that processes such as development, growth, tissue repair or death, metabolic shifts and immunity are all governed, at the molecular level, by signaling. By understanding cell signaling, diseases may be treated effectively and, theoretically, artificial tissues may be created. Cells sense information from their local surroundings through a class of proteins known as receptors. Chemicals that activate (or inhibit) receptors are often named hormones, growth factors, cytokines or even neurotransmitters yet their proper term is receptor ligands. Water soluble ligands have cell membrane penetration and thus mostly interact with trans-membranous receptors, whereas ligands with high lipid solubility easily penetrate the cell membrane

[TOP]

Nuclear Receptors


Nuclear receptors are ligand activated transcription factors. As such, they are able to regulate the expression of their target genes by direct DNA-binding, in a ligand-dependent manner. They play a central role in endocrine signaling, regulation of embryonic and adult development and differentiation [2] [3]. Many nuclear receptors, are among the primary targets of drug discovery because of their diverse biological actions. Nuclear receptors bear high homology to each other and are modular into distinct domains: N-terminal regulatory domain, DNA-binding domain, a Hinge region, Ligand binding domain (LBD) and a C-terminal domain.


[TOP]

Ligand Binding Domains

Ligand binding domain (LBD) is a well conserved domain amongst various nuclear receptors whose structure usually referred to as an alpha helical sandwich fold. The LBD shows some diversity among nuclear receptors as it is a site for receptor-specific events. It possesses transactivation ability and contains a ligand-binding pocket as well as the main interaction surfaces for other proteins.

The DNA-binding domain (DBD) contains two Zinc-finger motifs and is linked to the LBD by a highly flexible hinge region. This segment of the nuclear receptors holds the ability to recognize and bind to preferred or specific DNA-motifs, the response elements.

The Ligand binding domain together with the DNA binding domain contributes to the interface of the receptor by binding accessory proteins (coactivator and corepressor) and dimerization of receptors. The LBD also contains the activation function 2 (AF-2) whose action is dependent on the presence of bound ligand [8]. The change in receptor configuration which occurs upon ligand binding exposes the AF-2 domain, which promotes transcriptional activity by a wide variety of mechanisms.


[TOP]

Model Organisms

Drosophila Melanogaster

Drosophila Melanogaster, also known as the common fruit fly, is one of the most frequently used model organisms in biological sciences, including studies in genetics, physiology, microbial pathogenesis and life history evolution.[9] The ecdysone receptor is a nuclear receptor found in D.Melanogaster, where it controls development and contributes to other processes such as reproduction. Its ligands are ecdysteroid which are secreted by the organism’s prothoracic gland.


[TOP]

Caenorhabditis elegans

Caenorhabditis elegans is a free-living, transparent nematode (roundworm), about 1 mm in length,[10] which lives in temperate soil environments C. elegans is intensively studied as a model organism in biology for a variety of reasons. The developmental fate of every single somatic cell (959 in the adult hermaphrodite; 1031 in the adult male) has been mapped out.[11] [12] The C.elegans genome harbors 284 nuclear receptors [10] (a striking figure), which have been shown to control traits such as sex determination, larva development, life span, neuronal growth and identity and much more. As far as nuclear receptors go, they are a gold mine.


[TOP]

Homo Sapiens

Homo sapiens are the only living species in the Homo genus of bipedal primates in the great ape family. Nuclear receptors number up to 47 in humans, yet only few have been well characterized. They constitute the focus of medicinal reproductive technologies, hormonal medicine (endocrinology), immunology, drug interaction and much more.

[TOP]

In The Laboratory (Techniques And Reagents)

Two Hybrid Screening

Two-hybrid screening is a technique in molecular biology which can be used to investigate protein interaction with other proteins or DNA[13] [14] by testing for biochemical interactions such as binding. The premise behind the test is the activation of reporter gene by a transcription factor binding to DNA response elements located upstream (aka upstream activating sequence or UAS. The transcription factor being investigated is split to two separate functional fragments. The binding domain is the DNA binding domain responsible for associating with the UAS. The activating domain is responsible for transcriptional activation. When simplified it may be viewed as a biological system at which the input is the transcription factor concentration and the output is the transcriptional activity generated. Many versions of the technique have been implemented including one for the study of DNA binding affinity changes in receptors as a cause of ligand binding (the one hybrid screening). Yeast Gal 4 is a common DBD used for this techniques purpose. Commly used reporter genes include the product of the LacZ gene (Beta galactosidase) and Luciferase.

[TOP]

Luciferase

Luciferase is an enzyme class able to produce bioluminescence by oxidizing the substrate luciferin. "Firefly luciferase" as a laboratory reagent usually refers to P. pyralis luciferase. Its emission can be measured photometrically and hence used to deduce the protein enzyme concentration through standardized methods.

[TOP]




Cos-1 cells

Cos-1 cells (acronym for CV-1 simian origin, SV-40 viral positive) is cell line derived from the African green monkey kidney cells. It is also often used to transfect cells in tissue culture conditions to produce recombinant proteins for molecular biology, biochemistry, and cell biology experiments. Two forms of COS cell lines commonly used are COS-1 and COS-7. The cell line was obtained by immortalizing the original CV-1 cells with SV-40 virus genome. This allows the production of large T antigen but has a defect in genomic replication.[15]

[TOP]

Dose response curve

Dose response curve depicts a change in a measured effect on an organism caused by differing levels of exposure to a chemical in standardized measuring conditions. It may apply to either individuals or to populations. The curve is usually displayed in a simple X-Y graph (X being logarithm of dose, Y for effect). The half maximal effective concentration (EC50), a common feature of drug potency, is the chemical’s concentration which induces a response halfway between the baseline and maximum.[16]

[TOP]


References


1. ^ Witzany, Guenther (2010). Biocommunication and Natural Genome Editing. Springer. ISBN 9789048133185.
2. ^ Evans RM (1988). "The steroid and thyroid hormone receptor superfamily". Science 240 (4854): 889–95. doi:10.1126/science.3283939. PMID 3283939.
3. ^ Olefsky JM (2001). "Nuclear receptor minireview series". J. Biol. Chem. 276 (40): 36863–4. doi:10.1074/jbc.R100047200. PMID 11459855.
4. ^ a b Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995). "The nuclear receptor superfamily: the second decade". Cell 83 (6): 835–9. doi:10.1016/0092-8674(95)90199-X. PMID 8521507.
5. ^ a b Novac N, Heinzel T (2004). "Nuclear receptors: overview and classification". Curr Drug Targets Inflamm Allergy 3 (4): 335–46. doi:10.2174/1568010042634541. PMID 15584884. http://www.ingentaconnect.com/content/ben/cdtia/2004/00000003/00000004/art00002.
6. ^ a b c Nuclear Receptors Nomenclature Committee (1999). "A unified nomenclature system for the nuclear receptor superfamily". Cell 97 (2): 161–3. doi:10.1016/S0092-8674(00)80726-6. PMID 10219237.
7. ^ a b Laudet V (1997). "Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor". J. Mol. Endocrinol. 19 (3): 207–26. doi:10.1677/jme.0.0190207. PMID 9460643.
8. ^ a b Wärnmark A, Treuter E, Wright AP, Gustafsson J-Å (2003). "Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation". Mol. Endocrinol. 17 (10): 1901–9. doi:10.1210/me.2002-0384. PMID 12893880.
9. ^ a b Eric C. R. Reeve, ed (2001-06-23). "Drosophila melanogaster: The Fruit Fly". Encyclopedia of genetics. USA: Fitzroy Dearborn Publishers, I. pp. 157. Retrieved 2009-07-01.
10. WormBook - a free online compendium of all aspects of C. elegans biology, including laboratory protocols
11. ^ Sulston JE, Horvitz HR (March 1977). "Post-embryonic cell lineages of the nematode, Caenorhabditis elegans". Dev. Biol. 56 (1): 110–56. doi:10.1016/0012-1606(77)90158-0. PMID 838129.
12. ^ Kimble J, Hirsh D (June 1979). "The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans". Dev. Biol. 70 (2): 396–417. doi:10.1016/0012-1606(79)90035-6. PMID 478167.
13. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab Joung J, Ramm E, Pabo C (2000). "A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions". Proc. Natl. Acad. Sci. U.S.A. 97 (13): 7382–7. doi:10.1073/pnas.110149297. PMID 10852947. PMC 16554. http://www.pnas.org/cgi/content/full/97/13/7382.
14. ^ a b c d e f g h i j Hurt J, Thibodeau S, Hirsh A, Pabo C, Joung J (2003). "Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection". Proc. Natl. Acad. Sci. U.S.A. 100 (21): 12271–6. doi:10.1073/pnas.2135381100. PMID 14527993. PMC 218748. http://www.pnas.org/cgi/content/full/100/21/12271.
15. Gluzman Y (1981) SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23: 175-182. PMID 6260373
16. Introducing doseresponse curves, Graphpad Software