Team:SDU-Denmark/project-p

From 2010.igem.org

(Difference between revisions)
(Videomicroscopy and computer analysis of bacterial motility)
(Computerized analysis of the bacterial motility with the THOR prototype by Unisensor A/S and the Unify software)
Line 59: Line 59:
For this experiment we changed our protocol for cultivating swimming bacteria in order to optimize their mobility [https://2010.igem.org/Team:SDU-Denmark/protocols#PS1.2 PS1.2]<br>
For this experiment we changed our protocol for cultivating swimming bacteria in order to optimize their mobility [https://2010.igem.org/Team:SDU-Denmark/protocols#PS1.2 PS1.2]<br>
The machine and software used for the analysis are prototypes and still under heavy development. Because of trade secrets it is impossible for us to explain how the machine works or give a detailed explanation of it's mechanism until the THOR has reached production status. Simplistically said it is a very advanced video microscope, with which it is possible to analyse liquids and the particles inside those in both 2D and 3D, while also tracking them over time and also space, since the camera/optical lens can also move along the slide, while recording. <br>
The machine and software used for the analysis are prototypes and still under heavy development. Because of trade secrets it is impossible for us to explain how the machine works or give a detailed explanation of it's mechanism until the THOR has reached production status. Simplistically said it is a very advanced video microscope, with which it is possible to analyse liquids and the particles inside those in both 2D and 3D, while also tracking them over time and also space, since the camera/optical lens can also move along the slide, while recording. <br>
-
2.5 ul of the bacterial dilution were placed on the center of the microscopy slide and covered by a cover slip, which results in a layer of liquid with a height of 6 um. Afterwards the sample was sealed with mineral oil as to prevent a flow in the liquid. The data collection was done exactly as described in the previous experiment, with the exception that we diodes instead of optical filters. The light used for recording was a red LED diode with a wavelength of 660 nm. The lightsource used for the exposure was a bluelight LED, which emitted light at a wavelength of 470 nm, which hit the sample with an angle of attack of 17°. Moreover we also recorded the bacteria's behaviour when exposed to a blue light gradient and varying intensities of light measured in milliampere ranging from 1 mA to 20 mA. All the measurements were carried out on the modified phototactic bacteria and the wildtype MG1655 as a control.<br>
+
2.5 ul of the bacterial dilution were placed on the center of the microscopy slide and covered by a cover slip, which results in a layer of liquid with a height of 6 um. Afterwards the sample was sealed with mineral oil as to prevent a flow in the liquid. The data collection was done exactly as described in the previous experiment, with the exception that we used diodes instead of optical filters. The light used for recording was a red LED diode with a wavelength of 660 nm. The light source used for the exposure was a bluelight LED, which emitted light at a wavelength of 470 nm, and hit the sample with an angle of attack of 17°. Moreover we also recorded the bacteria's behaviour when exposed to a blue light gradient and varying intensities of light measured in milliampere ranging from 1mA to 20mA. All the measurements were carried out on the modified phototactic bacteria and the wildtype MG1655 worked as a control.<br>
The resulting videos looked like these examples:<br>
The resulting videos looked like these examples:<br>
<br><html>
<br><html>
Line 65: Line 65:
<br></html>
<br></html>
The bacteria that are not moving in the video are assumed to be sticking to the glass or coverslip.<br>
The bacteria that are not moving in the video are assumed to be sticking to the glass or coverslip.<br>
-
From these videos we extracted data through Unisensor's in-house programmed software Unify and it's tracking extension. For each frame the bacteria were identified and their location compared to that of the frame before it and by thta, tracking the bacteria over time. The resulting data that was output for each frame was: Location of bacteria given as coordinates (X,Y), bacterial orientation in angle ranging from -180° to 180° and length of the path was tracked in pixels. An example of the unify sofware analysing the paths of the bacteria and at the same creating a video of the individual tracks:<br>
+
From these videos we extracted data through Unisensor's in-house programmed software Unify and it's tracking extension. For each frame the bacteria were identified and their location compared to that of the frame before and thereby, tracking the bacteria over time. The resulting data which served as output for each frame was: Location of bacteria given as coordinates (X,Y), bacterial orientation in angle ranging from -180° to 180° and length of the path was tracked in pixels. An example of the unify sofware analysing the paths of the bacteria and at the same creating a video of the individual tracks is showed belowe:<br>
<html><object width="425" height="344"><param name="movie" value="http://www.youtube.com/v/lARwMFCay_Q?hl=de&fs=1"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="http://www.youtube.com/v/lARwMFCay_Q?hl=de&fs=1" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="425" height="344" align="center"></embed></object></html><br>
<html><object width="425" height="344"><param name="movie" value="http://www.youtube.com/v/lARwMFCay_Q?hl=de&fs=1"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="http://www.youtube.com/v/lARwMFCay_Q?hl=de&fs=1" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="425" height="344" align="center"></embed></object></html><br>
Here is an example of a .txt file containing the results: [https://static.igem.org/mediawiki/2010/6/6b/TrackResult_iGEM-WTred1.txt Tracks of wildtype bacteria exposed to red light]. If interested, please request the whole dataset from us, which will be sent out as a 450mb zip file.<br>
Here is an example of a .txt file containing the results: [https://static.igem.org/mediawiki/2010/6/6b/TrackResult_iGEM-WTred1.txt Tracks of wildtype bacteria exposed to red light]. If interested, please request the whole dataset from us, which will be sent out as a 450mb zip file.<br>
From this file, a trackplot was generated, showing each bacteria's path over the recorded time:<br>
From this file, a trackplot was generated, showing each bacteria's path over the recorded time:<br>
[[Image:TrackPlotTagged.png|thumb|400px|center|Bacteria containing K343007 tracked over 7.5 seconds]]<br>
[[Image:TrackPlotTagged.png|thumb|400px|center|Bacteria containing K343007 tracked over 7.5 seconds]]<br>
-
We started out with extracting the mean velocity in um/frame for the photosensor and wildtype bacteria when exposed red and blue light, the mean was extracted from around 100 paths for each of the 4 different samples (only taken from the experiment where we shifted between red and blue light, data from the light intensity and gradient experiment were not included.). What we hoped to see was that bacteria that tumble less would have a higher mean velocity, than bacteria that exhibit a normal rate of tumbling (the wildtype):<br>
+
We started out with extracting the mean velocity in um/frame for the photosensor and wildtype bacteria when exposed to red and blue light, the mean was extracted from around 100 paths for each of the 4 different samples (only taken from the experiment where we shifted between red and blue light. Data from the light intensity and gradient experiment were not included.). Based on the assumption that bacteria that tumble less would have a higher mean velocity, than of those exhibiting a normal rate of tumbling, we would expect a difference in mean velocity of the bacteria expressing the photosensor when illuminated with either red or blue light.<br>
[[Image:Red_blue_PS_noPS.jpg|750px|center]]<br>
[[Image:Red_blue_PS_noPS.jpg|750px|center]]<br>
-
Contrary to our expectations the plot over mean velocity/frame did not show a noticeable difference between the four samples. The photosensor had about the same velocity/frame in blue and red light and there was no clear difference either when compared to the wildtype. The reason for this could be that we were were not effective enough at excluding non-informative paths from the data file (bacteria that are trapped in a circular motion, bacteria only exhibiting brownian motion) and / or that the environment the experiments were done in, was not optimal in the meaning of that the photosensor was exposed to light, before the measurements.<br>
+
Contrary to our expectations the plot over mean velocity/frame did not show a noticeable difference between the four samples. The photosensor had about the same velocity/frame in blue and red light and there was no clear difference when compared to the wildtype either. The reason for this could be that we were not effective enough at excluding non-informative paths from the data file (i.e. bacteria that are trapped in a circular motion, bacteria only exhibiting brownian motion) and / or that the conditions for which the experiments were carried out, were not optimal given that the photosensor was exposed to light, before the measurements.<br>
-
Since the results from the experiment with the red and blue light were inconclusive, we went on to analyse the data from the experiment, where we set up a light gradient in the area that was observed through the microscope. We recorded this for 40 seconds with a framerate of 4 frames/second, waited for 100 seconds and recorded again for 40 seconds. We did 10 iterations of this, which would give us a long-term overview of migration (if there is any) along the light gradient. Afterwards we repeated the same experiment without stimulating the bacteria through a light gradient. A track diagram was created, which should show us if the tracked microbes would show any preference in one direction. In the circular diagram each abcteria starts at point zero and then moves is plotted by its angle and distance traveled. This will give us an idea if there is any tendency to either move towards or away from the light. The lightsource was placed at 90 degrees in the diagram, which means that bacteria that moved in that general direction moved towards the source of light:
+
Since the results from the experiment with the red and blue light were inconclusive, we went on to analyse the data from the experiment, where we set up a light gradient in the area that was observed through the microscope. We recorded this for 40 seconds with a framerate of 4 frames/second, waited for 100 seconds and recorded again for 40 seconds. We did 10 iterations of this, which would give us a long-term overview of migration (if there is any) along the light gradient. Afterwards we repeated the same experiment without stimulating the bacteria through a light gradient. A track diagram was created, which should show us if the tracked microbes would show any preference in one direction. In the circular diagram each bacteria starts at point zero and then moves is plotted by its angle and distance traveled. This will give us an idea if there is any tendency to either move towards or away from the light. The lightsource was placed at 90 degrees in the diagram, which means that bacteria that moved in that general direction moved towards the source of light:
[[Image:TrackDiagramGradient.png|thumb|400px|center|Track diagram of phototaxic bacteria swimming, when exposed to a blue light gradient (470nm). ]]<br>
[[Image:TrackDiagramGradient.png|thumb|400px|center|Track diagram of phototaxic bacteria swimming, when exposed to a blue light gradient (470nm). ]]<br>
-
The diagram shows that the bacteria that exhibit proper swimming motility (paths longer than 40, no circular movement, no brownian movement) show a slight tendency to move towards the more illuminated areas of the gradient. This can be interpreted as blue light acting as an attractant on the phototaxis pathway. Even though we can see this tendency, it should only be used as an indicator, since because of time constraints this experiment could not be repeated and the number of sampled bacteria is rather low (around 40), which means that the shown tendency could also be coincidence.<br>
+
The diagram shows that the bacteria that exhibit proper swimming motility (i.e. paths longer than 40, no circular movement, no brownian movement) show a slight tendency to move towards the more illuminated areas of the gradient. This can be interpreted as blue light acting as an attractant on the phototaxis pathway. Even though we can see this tendency, it should only be used as an indicator, since due to time constraints this experiment could not be repeated and the number of sampled bacteria is rather low (around 40), which means that the shown tendency could also be coincidence.<br>
-
The data from the experiments with varying light intensity could not be analysed because of lack of time, but if there is any interest in it, we will gladly provide all the data that we collected.<br>
+
The data from the experiments with varying light intensity could not be analysed due to lack of time, but if there is any interest in it, we will gladly provide all the data that we collected.<br>
-
From these experiments, we cannot definitely conclude that blue light acts as an attractant stimulus on the part K343007, but the experiment only indicates that this could be the case. The gradient experiment would have to be repeated, to see if the shown tendency would still show up with a greater pool of samples. The data analysis also needs more time, since our team could only spend one day doing the experiments and another two days analysing the results. So there are still a lot of parameters, that simply have not been calculated, like tumbling frequency.
+
From these experiments, we cannot definitely conclude that blue light acts as an attractant stimulus on part K343007, but the experiment only indicates that this might be the case. In order to verify if the shown tendency would still show up with a greater pool of samples, dublicate detreminations of the light gradient experiment would have to be made. The data analysis also needs more time, since our team could only spend one day doing the experiments and another two days analysing the results. So there are still a lot of parameters, like tumbling frequency, that simply have not been calculated.

Revision as of 20:03, 27 October 2010