Team:Chiba/System 2
From 2010.igem.org
(Difference between revisions)
Line 351: | Line 351: | ||
----------------------------------------------------------------------------------- --> | ----------------------------------------------------------------------------------- --> | ||
<br><br><br> | <br><br><br> | ||
+ | <html> | ||
+ | <table border="0" cellpadding="30" cellspacing="0" align=”center”> | ||
+ | <tr> | ||
+ | <td width="800px"><font size="4" face="verdana">Overall Circuit</font><br> | ||
+ | <hr width="500" size="1" align="left"><br> | ||
+ | <center> | ||
+ | <font size=2 face=verdana> | ||
+ | <img src="https://static.igem.org/mediawiki/2010/6/60/Chiba_ani3.gif"><br> | ||
+ | </center> | ||
+ | Our first design of genetic double-click system is based on a combination of a Fast-pulse and a Slow-pulse. This system consists of a pulse-generator and two inverters which can be seemed as a slow pulse.In this system, we also use AHL input and GFP output. This time, we use AHL as an activate signal, so when there is AHL added, Lux promoter will be activated. The transcription factors of output are T7 RNA Polymerase and cI repressor.<br> | ||
+ | <center> | ||
+ | <img src="https://static.igem.org/mediawiki/2010/d/db/Chiba_plan2_1.jpg"><br> | ||
+ | </center> | ||
+ | </td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | |||
+ | |||
+ | <table border="0" cellpadding="30" cellspacing="0" align=”center”> | ||
+ | <tr> | ||
+ | <td width="965px"><font size="4" face="verdana">Fast Pulse</font><br> | ||
+ | <hr width="500" size="1" align="left"><br> | ||
+ | <center> | ||
+ | <font size=2 face=verdana> | ||
+ | <img src="https://static.igem.org/mediawiki/2010/4/41/Chiba_planB_2.jpg" width="800px"><br> | ||
+ | </center> | ||
+ | </td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <table border="0" cellpadding="30" cellspacing="0" margin-top="-50"> | ||
+ | <tr> | ||
+ | <td width="800px"><font size=2 face=verdana> | ||
+ | At initial state, LuxR and cI protein are constitutively generated. cI binds to the operator site of PT7/cI. When 1st input is injected, LuxR-AHL dimmer binds to the Lux-box of the lux promoters so that T7 RNA Polymerase, cI434 and tetR protein are generated at the same time. cI434 gradually accumulates, and gradually repress the transcription of T7 RNA Polymerase so that the expression of T7 RNA Polymerase can be shown as a pulse. At the same time, Transcription of cI is stopped by tetR, cI decomposes and the PT7/cI promoter is unbound. This derepression occurs after the pulse of T7 RNAP has passed. In other words, the operator sites of PT7/cI is repressed by cI when there is pulse of T7 RNA Polymerase. So, it cannot transcribe GFP. TetR creates a time delay here from input to derepression. Because of this time delay and one-time pulse, bacteria can never work by one input. | ||
+ | </td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | |||
+ | |||
+ | |||
+ | <table border="0" cellpadding="30" cellspacing="0" align=”center”> | ||
+ | <tr> | ||
+ | <td width="965px"><font size="4" face="verdana">Slow Pulse</font><br> | ||
+ | <hr width="500" size="1" align="left"><br> | ||
+ | <center> | ||
+ | <font size=2 face=verdana> | ||
+ | <img src="https://static.igem.org/mediawiki/2010/2/2f/Chiba_planB_3.jpg" width="800px"><br> | ||
+ | </center> | ||
+ | </td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <table border="0" cellpadding="30" cellspacing="0" margin-top="-50"> | ||
+ | <tr> | ||
+ | <td width="800px"><font size=2 face=verdana> | ||
+ | Before injecting 2nd input, we must create none-input-environment. So we choose to wash the 1st input. By washing , tetR protein and cI434 protein will degrade. cI434 protein should disappear so that when there is 2nd input, T7 RNA Polymerase will be shown as a pulse which is the same as the 1st time. cI will begin to generate if tetR protein gets lost. We recognize it as time-limit, when there is enough cI generated (this means cI repression is stronger than T7 RNA Polymerase activation), there will be no GFP output. On the contrary, when there is less cI protein or no cI protein at the moment, T7 RNA Polymerase pulse can accumulate GFP output. By the second injected AHL before the inhibition by cI, T7 RNA Polymerase binds to the PT7/cI promoter and transcribes the downstream GFP. | ||
+ | <center> | ||
+ | <img src="https://static.igem.org/mediawiki/2010/9/91/Chiba_planB_4.jpg" width="500px"><br> | ||
+ | </center> | ||
+ | </td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <table border="0" cellpadding="30" cellspacing="0" align=”center”> | ||
+ | <tr> | ||
+ | <td width="965px"> | ||
+ | <font size="4" face="verdana">Slow Pulse</font><br> | ||
+ | <hr width="500" size="1" align="left"><br> | ||
+ | <center> | ||
+ | <img src="https://static.igem.org/mediawiki/2010/2/2f/Chiba_planB_3.jpg" width="800px"><br> | ||
+ | </center> | ||
+ | </td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <table border="0" cellpadding="30" cellspacing="1" align="center"> | ||
+ | <tr> | ||
+ | <td width="800px"><font size=2 face=verdana> | ||
+ | Before injecting 2nd input, we must create none-input-environment. So we choose to wash the 1st input. By washing , tetR protein and cI434 protein will degrade. cI434 protein should disappear so that when there is 2nd input, T7 RNA Polymerase will be shown as a pulse which is the same as the 1st time. cI will begin to generate if tetR protein gets lost. We recognize it as time-limit, when there is enough cI generated (this means cI repression is stronger than T7 RNA Polymerase activation), there will be no GFP output. On the contrary, when there is less cI protein or no cI protein at the moment, T7 RNA Polymerase pulse can accumulate GFP output. By the second injected AHL before the inhibition by cI, T7 RNA Polymerase binds to the PT7/cI promoter and transcribes the downstream GFP. | ||
+ | <center> | ||
+ | <img src="https://static.igem.org/mediawiki/2010/9/91/Chiba_planB_4.jpg" width="500px"><br> | ||
+ | </center> | ||
+ | </td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | </html> | ||
+ | |||
+ | <!-------- Main --------> |
Revision as of 17:50, 27 October 2010
Overall Circuit |
Fast Pulse |
At initial state, LuxR and cI protein are constitutively generated. cI binds to the operator site of PT7/cI. When 1st input is injected, LuxR-AHL dimmer binds to the Lux-box of the lux promoters so that T7 RNA Polymerase, cI434 and tetR protein are generated at the same time. cI434 gradually accumulates, and gradually repress the transcription of T7 RNA Polymerase so that the expression of T7 RNA Polymerase can be shown as a pulse. At the same time, Transcription of cI is stopped by tetR, cI decomposes and the PT7/cI promoter is unbound. This derepression occurs after the pulse of T7 RNAP has passed. In other words, the operator sites of PT7/cI is repressed by cI when there is pulse of T7 RNA Polymerase. So, it cannot transcribe GFP. TetR creates a time delay here from input to derepression. Because of this time delay and one-time pulse, bacteria can never work by one input. |
Slow Pulse |
Before injecting 2nd input, we must create none-input-environment. So we choose to wash the 1st input. By washing , tetR protein and cI434 protein will degrade. cI434 protein should disappear so that when there is 2nd input, T7 RNA Polymerase will be shown as a pulse which is the same as the 1st time. cI will begin to generate if tetR protein gets lost. We recognize it as time-limit, when there is enough cI generated (this means cI repression is stronger than T7 RNA Polymerase activation), there will be no GFP output. On the contrary, when there is less cI protein or no cI protein at the moment, T7 RNA Polymerase pulse can accumulate GFP output. By the second injected AHL before the inhibition by cI, T7 RNA Polymerase binds to the PT7/cI promoter and transcribes the downstream GFP.
|
Slow Pulse |
Before injecting 2nd input, we must create none-input-environment. So we choose to wash the 1st input. By washing , tetR protein and cI434 protein will degrade. cI434 protein should disappear so that when there is 2nd input, T7 RNA Polymerase will be shown as a pulse which is the same as the 1st time. cI will begin to generate if tetR protein gets lost. We recognize it as time-limit, when there is enough cI generated (this means cI repression is stronger than T7 RNA Polymerase activation), there will be no GFP output. On the contrary, when there is less cI protein or no cI protein at the moment, T7 RNA Polymerase pulse can accumulate GFP output. By the second injected AHL before the inhibition by cI, T7 RNA Polymerase binds to the PT7/cI promoter and transcribes the downstream GFP.
|