Team:USTC Software/home

From 2010.igem.org

(Difference between revisions)
Line 3: Line 3:
{|
{|
-
|-
+
|-  
 +
|style="padding: 20px 20px 20px 20px;"|
==Welcome to the Team USTC_Software wiki for iGEM 2010 !==
==Welcome to the Team USTC_Software wiki for iGEM 2010 !==
Line 10: Line 11:
横着放一张照片。
横着放一张照片。
----
----
 +
{|
|-
|-
-
| valign="top" align="center" width="485" style="padding: 10 10px 10px 10px;" |
+
| valign="top" width="485" style="padding: 20px 20px 20px 20px;" |
==='''iGaME: Synthetic Biology for Gamers'''===
==='''iGaME: Synthetic Biology for Gamers'''===
Line 17: Line 19:
[[Image:USTC_Software_igame.jpg|250px|center]]
[[Image:USTC_Software_igame.jpg|250px|center]]
-
| valign="top" align="center" width="485" style="padding: 10 10px 10px 10px; |
+
| valign="top" width="485" style="padding: 20px 20px 20px 20px;" |
==='''Recommondations For Our Site'''===
==='''Recommondations For Our Site'''===
*'''New Database Language'''<BR>
*'''New Database Language'''<BR>
-
A new language called '''MoDeL''' (System Biology Part Modeling Database Language) is proposed for automatic modeling of biological system. Due to introducing of novel concepts of species and reaction templates, which are two main components in MoDeL, interactions between species need not to be completely provided and thus making automation possible.<br>
+
A new language called '''MoDeL''' (System Biology Part Modeling Database Language) is proposed for automatic modeling of biological system. Due to introducing of novel concepts of species and reaction templates, which are two main components in MoDeL, interactions between species need not to be completely provided and thus making automation possible.
[[Team:USTC_Software/MoDeL|'''[Learn More]''']]
[[Team:USTC_Software/MoDeL|'''[Learn More]''']]
 +
<br>
*'''Demos of Automatic Modeling'''<BR>
*'''Demos of Automatic Modeling'''<BR>
-
To show results of our program, some classical genetic regulatory networks are provided as demos, including toggle switch, repressilator as well as quorum-sensing oscillator. Each selected demo, representing a certain pattern of reaction network in biological process, is carefully designed to cover all our features as much as possible.<br>
+
To show results of our program, some classical genetic regulatory networks are provided as demos, including toggle switch, repressilator as well as quorum-sensing oscillator. Each selected demo, representing a certain pattern of reaction network in biological process, is carefully designed to cover all our features as much as possible.
[[Team:USTC_Software/MoDeL|'''[Learn More]''']]
[[Team:USTC_Software/MoDeL|'''[Learn More]''']]
-
 
+
<br>
*'''Human Practice'''<BR>
*'''Human Practice'''<BR>
-
We started a long term human practice, “the C project”, since this summer to explore the approaches of promotion of synthetic biology. “the C project”, as we call, consists of three parts: Curriculum, Communication and Community. All three parts are carefully designed and organized.<br>
+
We started a long term human practice, “the C project”, since this summer to explore the approaches of promotion of synthetic biology. “the C project”, as we call, consists of three parts: Curriculum, Communication and Community. All three parts are carefully designed and organized.
[[Team:USTC_Software/human_practice|'''[Learn More]''']]
[[Team:USTC_Software/human_practice|'''[Learn More]''']]
-
 
+
<br>
 +
|}
|}
|}

Revision as of 16:44, 22 October 2010


Welcome to the Team USTC_Software wiki for iGEM 2010 !

We are a team of both undergraduate and graduate students along with many advisors. This is the second year that USTC has sent a software team to iGEM.

横着放一张照片。


iGaME: Synthetic Biology for Gamers

To promote public awareness of synthetic biology and introduce its basic ideas to the laymen, our team devoted to the development of an experimental video game which aims at instructing non-biologists to design and improve biological systems. Following the games-with-a-purpose paradigm in which players help solve scientific problems, we attempt to apply the human brain's puzzle-solving abilities to the complex designs of biological systems. While most of developed simulation tools are designed for experts to model the reaction networks from scratch, our game integrates a modeling environment in which users only need to submit their assembling of parts for our program to discover and generate the biological model automatically. With a mass of data for the use of modeling, we propose the Standard Biological Parts Modeling Database Language, which enables descriptions of complicated biological processes. Furthermore, previous iGEM project models will be featured to demonstrate the availability of our idea.

USTC Software igame.jpg

Recommondations For Our Site

  • New Database Language

A new language called MoDeL (System Biology Part Modeling Database Language) is proposed for automatic modeling of biological system. Due to introducing of novel concepts of species and reaction templates, which are two main components in MoDeL, interactions between species need not to be completely provided and thus making automation possible. [Learn More]

  • Demos of Automatic Modeling

To show results of our program, some classical genetic regulatory networks are provided as demos, including toggle switch, repressilator as well as quorum-sensing oscillator. Each selected demo, representing a certain pattern of reaction network in biological process, is carefully designed to cover all our features as much as possible. [Learn More]

  • Human Practice

We started a long term human practice, “the C project”, since this summer to explore the approaches of promotion of synthetic biology. “the C project”, as we call, consists of three parts: Curriculum, Communication and Community. All three parts are carefully designed and organized. [Learn More]

Sponsors