Team:Tec-Monterrey/Project
From 2010.igem.org
Andreshuerta (Talk | contribs) |
Andreshuerta (Talk | contribs) |
||
Line 246: | Line 246: | ||
position: absolute; | position: absolute; | ||
top: 188px ; | top: 188px ; | ||
- | font: | + | font: 18px Arial; |
text-align: center; | text-align: center; | ||
} | } | ||
Line 659: | Line 659: | ||
<ul> | <ul> | ||
<li><a href="https://2010.igem.org/Team:Tec-Monterrey/Under">Undergraduates</a></li> | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/Under">Undergraduates</a></li> | ||
- | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/Instructors">Instructors</a></li> | + | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/Instructors">Instructors/Advisors</a></li> |
+ | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/Attributions">Attributions</a></li> | ||
<li><a href="https://2010.igem.org/Team:Tec-Monterrey/Headquarters">Headquarters</a></li> | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/Headquarters">Headquarters</a></li> | ||
- | |||
- | |||
</ul> | </ul> | ||
</li> | </li> | ||
<li> | <li> | ||
- | <p><br /> | + | <p><br/><a href="https://2010.igem.org/Team:Tec-Monterrey/Project"> Project</a></p> |
- | + | ||
<ul> | <ul> | ||
- | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/ | + | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/Introduction">Introduction</a></li> |
- | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/ | + | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/Geneticframe">Genetic Frame</a></li> |
- | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/ | + | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/Parts">Parts</a></li> |
- | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/ | + | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/FutureResearch">Future Research</a></li> |
</ul> | </ul> | ||
</li> | </li> | ||
<li> | <li> | ||
- | <p><br /> | + | <p><br/><a href="https://2010.igem.org/Team:Tec-Monterrey/Documentation"> Documentation</a></p> |
- | + | ||
<ul> | <ul> | ||
- | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/ | + | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/Journal">Journal</a></li> |
<li><a href="https://2010.igem.org/Team:Tec-Monterrey/Protocols">Protocols</a></li> | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/Protocols">Protocols</a></li> | ||
- | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/ | + | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/SafetyEthics">Safety & Ethics</a></li> |
- | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/ | + | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/Humanpractices">Human Practices</a></li> |
</ul> | </ul> | ||
</li> | </li> | ||
<li> | <li> | ||
- | <p><br /> | + | <p><br/><a href="https://2010.igem.org/Team:Tec-Monterrey/Bonus"> Bonus</a></p> |
- | + | ||
<ul> | <ul> | ||
- | |||
<li><a href="https://2010.igem.org/Team:Tec-Monterrey/Gallery">Gallery</a></li> | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/Gallery">Gallery</a></li> | ||
- | |||
<li><a href="https://2010.igem.org/Team:Tec-Monterrey/Mascot">Wiki Wiki</a></li> | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/Mascot">Wiki Wiki</a></li> | ||
</ul> | </ul> | ||
Line 723: | Line 717: | ||
<div class="bdy"> | <div class="bdy"> | ||
<p align="center"> | <p align="center"> | ||
- | <a href="http://www.uniparts.com.mx/"><img src="https://static.igem.org/mediawiki/2010/d/d9/Uniparts.jpg" width="200px" height="83px" border="0" ></a> | + | <a href="http://www.uniparts.com.mx/" target="blank"><img src="https://static.igem.org/mediawiki/2010/d/d9/Uniparts.jpg" width="200px" height="83px" border="0" ></a> |
<br><br><br> | <br><br><br> | ||
- | <a href="http://www.promega.com/"><img src="https://static.igem.org/mediawiki/2010/2/20/Promega.gif" width="170px" height="110px" border="0" ></a> | + | <a href="http://www.promega.com/" target="blank"><img src="https://static.igem.org/mediawiki/2010/2/20/Promega.gif" width="170px" height="110px" border="0" ></a> |
<br><br><br> | <br><br><br> | ||
- | <a href="http://www.corning.com/"><img src="https://static.igem.org/mediawiki/2010/3/32/Corning.jpg" width="170px" height="29px" border="0" ></a> | + | <a href="http://www.corning.com/" target="blank"><img src="https://static.igem.org/mediawiki/2010/3/32/Corning.jpg" width="170px" height="29px" border="0" ></a> |
<br><br><br> | <br><br><br> | ||
- | <a href="http://www. | + | <a href="http://www.sartorius.com/" target="blank"><img src=" https://static.igem.org/mediawiki/2010/7/70/Sartoriussmall.jpg" border="0" ></a> |
- | <br><br> | + | <br><br><br> |
- | <a href="http://www. | + | <a href="http://www.millipore.com/" target="blank"><img src="https://static.igem.org/mediawiki/2010/6/6b/Millipore.jpg" width="170px" height="50px" border="0" ></a> |
<br> | <br> | ||
<br> | <br> | ||
Line 753: | Line 747: | ||
<div class="hd"><div class="g"></div></div> | <div class="hd"><div class="g"></div></div> | ||
<div class="top"> | <div class="top"> | ||
- | <img src="https://static.igem.org/mediawiki/ | + | <img src="https://static.igem.org/mediawiki/igem.org/9/92/Project.png" border="0" > |
<div class="bdy"> | <div class="bdy"> | ||
<p class="blah"> | <p class="blah"> | ||
- | + | In this section you will find all the information related to our iGEM Project, how we came up with the idea, the theory behind our experiments and the results and parts that were obtained after our hard work. | |
+ | |||
+ | <ol class="menud"> | ||
+ | <a href="#abstract"><li>Project Abstract</a></li> | ||
+ | <a href="#overview"><li>Project Overview</a></li> | ||
+ | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/Introduction">Introduction</a>: To know more about the basis of synthetic biology and bacterial reporters.</li> | ||
+ | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/Geneticframe">Genetic Frame</a>: The core of our project and our main proposal.</li> | ||
+ | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/Parts">Parts</a>: BioBricks we developed during the project.</li> | ||
+ | <li><a href="https://2010.igem.org/Team:Tec-Monterrey/FutureResearch">Future Research</a>: Our considerations on what will be the next steps to follow and the applications that our project holds for the future.</li> | ||
+ | |||
+ | </ol> | ||
+ | |||
Line 771: | Line 776: | ||
</div> | </div> | ||
+ | <div class="hd"><div class="g"></div></div> | ||
+ | <div class="top"> | ||
+ | <a name="abstract"></a><img src="https://static.igem.org/mediawiki/2010/7/7e/Abstracttitulo.png" border="0" > | ||
+ | <div class="bdy"> | ||
+ | <p class="blah"> | ||
+ | Bacterial reporters or whole-cell bacterial sensors have always been an area of application for genetic manipulation and synthetic biology. The first bacterial reporters appeared 20 years ago, although these early tests didn't use genetically modified microorganisms. Further research and development in the area of genetic engineering has resulted in newer and more sophisticated bacterial sensors, capable of detecting the presence of contaminants, sugars and amino acids in different media such as soil and water. However, most bacterial sensors can only detect the presence of a compound at a certain concentration and currently there are few documented bacterial sensors that can detect and report different concentrations of the compound of interest. Our objective was to develop a genetic frame, compatible with the BioBrick standard, for the creation of a concentration-sensitive bacterial sensor. In the process we also developed and characterized BioBricks for two new families of phage activators. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | </p> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | |||
+ | </div> | ||
+ | <div class="ft"><div class="c"> </div></div> | ||
+ | <div class="bgr"><br> | ||
+ | </div> | ||
Line 781: | Line 805: | ||
<div class="top"> | <div class="top"> | ||
- | <img src="https://static.igem.org/mediawiki/2010/e/ef/Projectoverview.png" border="0" > | + | <a name="overview"></a><img src="https://static.igem.org/mediawiki/2010/e/ef/Projectoverview.png" border="0" > |
<div class="bdy"> | <div class="bdy"> | ||
<p class="blahimgder"> | <p class="blahimgder"> |
Revision as of 14:18, 27 October 2010
In this section you will find all the information related to our iGEM Project, how we came up with the idea, the theory behind our experiments and the results and parts that were obtained after our hard work.
Bacterial reporters or whole-cell bacterial sensors have always been an area of application for genetic manipulation and synthetic biology. The first bacterial reporters appeared 20 years ago, although these early tests didn't use genetically modified microorganisms. Further research and development in the area of genetic engineering has resulted in newer and more sophisticated bacterial sensors, capable of detecting the presence of contaminants, sugars and amino acids in different media such as soil and water. However, most bacterial sensors can only detect the presence of a compound at a certain concentration and currently there are few documented bacterial sensors that can detect and report different concentrations of the compound of interest. Our objective was to develop a genetic frame, compatible with the BioBrick standard, for the creation of a concentration-sensitive bacterial sensor. In the process we also developed and characterized BioBricks for two new families of phage activators.
Development of a genetic frame for the creation of concentration-sensitive bacterial sensors
Bacterial reporters or whole-cell bacterial sensors have always been an area of application for genetic manipulation and synthetic biology. As a matter of fact, constructing a bioreporter bacteria that has the ability to detect toxic chemicals is considered one of the first accomplishments in the discipline of synthetic biology (van der Meer and Belkin, 2010). There are several advantages to using a bacterial bioreporter instead of a traditional physical or chemical sensor, for example, bacteria can offer the same specificity and sensitivity that traditional sensors offer, but they are much more portable and grow in inexpensive media. Furthermore, bacterial reporters also offer advantages over using other types of biosensors like enzymes and antibodies because they are living organisms and they are capable of analyzing samples through a process that involves many enzymes (Yagi, 2007)
The first bacterial reporters appeared 20 years ago (van der Meer and Belkin, 2010) although these early tests didn’t use genetically modified microorganisms. Further research and development in the areas of genetic engineering and synthetic biology have resulted in many more applications such as detection of contaminants (Willardson, et. Al., 1998) and sugar and amino acid availability in soils (Jaeger, et. Al., 1999). Even though the reporters have gotten more sophisticated and sensitive, we realized that there isn’t much mention of a single bacterial bioreporter capable of detecting different concentrations of a substance and reacting differently depending on the concentration.
We thought the use of synthetic biology as well as the BioBrick standard could help create a “genetic circuit” (van der Meer and Belkin, 2010) capable of detecting different concentrations of a substance and reacting in a different manner depending on the amount detected. In our initial research we realized that the iGEM British Columbia 2009 team decided to do something similar, so we used parts of their project as a base and integrated parts of other previous iGEM projects in order to propose a new genetic construction capable of detecting different amounts of a certain substance. We call these new types of sensors, “intelligent biosensors”, because they have the ability to react in different ways depending on their surroundings.
With our project we hope to continue with the previous efforts of other iGEM teams, and at the same time propose a new type of genetic circuit for achieving these functions. In the process we plan to develop BioBricks for two new families of phage activators as well as different BioBrick constructons that can make our system easy to adapt, so that the creation of these “intelligent biosensors” becomes just a matter of choosing the substance of interest and choosing the different reporters.
References
Jaeger, C. H., et. Al. (June 1999) Mapping of Sugar and Amino Acid Availability in Soil around Roots with Bacterial Sensors of Sucrose and Tryptophan. Applied and Environmental Microbiology, Vol. 65, No. 6, p. 2685 - 2690
Van der Meer, J. R. and Belkin, S. (July 2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nature Reviews Microbiology, Vol. 8, p. 511 - 522
Willardson, B. M., et. Al. (March 1998) Development and Testing of a Bacterial Biosensor for Toluene-Based Environmental Contaminants. Applied and Environmental Microbiology, Vol. 64, No. 3, p. 1006- 1012
Yagi, K. (2007) Applications of whole-cell bacterial sensors in biotechnology and environmental science. Applied Microbiology and Biotechnology, Vol. 73, p. 1251 - 1258