Team:SDU-Denmark/project-m

From 2010.igem.org

(Difference between revisions)
(3. Description of model)
(2. The real system)
Line 16: Line 16:
[[Image:Team-SDU-Denmark-2010-The_real1.jpeg|thumb|center|550px|A, shows a shematic picture of [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 7]]. B and C shows respectively the flagella of a bacteria stuck to a surface and flagella bundels of a moving bacteria[[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 6]].]]
[[Image:Team-SDU-Denmark-2010-The_real1.jpeg|thumb|center|550px|A, shows a shematic picture of [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 7]]. B and C shows respectively the flagella of a bacteria stuck to a surface and flagella bundels of a moving bacteria[[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 6]].]]
-
To be able to model the flow created by a bacterial carpet it is essential to know what kind of flowfield a single flagellum/bundle will create. This has primarily been investigated by numerical approach, where the flagella are modeled as semiflexible hookian systems. Several studies [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 4-5]] suggests that the flow created from a single flagellum is highly non-uniform, but to some degree circular symmetric at the end of the flagellum (see figure XX and XX). When the flagella bundle together [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 4]] suggests that this symmetry becomes less clear and flow becomes even more complicated.  
+
To be able to model the flow created by a bacterial carpet it is essential to know what kind of flowfield a single flagellum/bundle will create. This has primarily been investigated by numerical approach, where the flagella are modeled as semiflexible hookian systems. Several studies [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 4-5]] suggests that the flow created from a single flagellum is highly non-uniform, but to some degree circular symmetric at the end of the flagellum (see figure XX and XX). When the flagella bundle together [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 4]] suggests that this symmetry becomes less clear and flow becomes even more complicated.
 +
 
 +
[[Image:Team-SDU-Denmark-2010-The_real2.jpeg|thumb|center|550px|A, shows XX [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 4]]. B shows XX[[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 5]].]]
All these results refers to flagella moving freely in aquas solution, the question now is wether the same is true for bacterial strick to the surface of a narrow tube? [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 6]] suggests that bacteria compleatly fixed to a surface will deviate from the bundel behavior, but it is unclear what happens if the fixation is more partial or that the bacteria is sorrounded by a flow.
All these results refers to flagella moving freely in aquas solution, the question now is wether the same is true for bacterial strick to the surface of a narrow tube? [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 6]] suggests that bacteria compleatly fixed to a surface will deviate from the bundel behavior, but it is unclear what happens if the fixation is more partial or that the bacteria is sorrounded by a flow.

Revision as of 17:25, 16 October 2010