Team:Valencia/Terraforming

From 2010.igem.org

Revision as of 08:31, 26 October 2010 by Alejovigno (Talk | contribs)


Time goes by... (El tiempo pasa...)

Follow us:
Valencia iGEM Team Facebook Valencia iGEM Team Twitter

Our main sponsors:


Our institutions:


Visitor location:

 » Home » The Project

The setting: terraforming of Mars

Terraforming of a planetary body (planet or moon) or planetary ecosynthesis is the hypothetical process of deliberately modifying its atmosphere composition, temperature, topography, or ecology to be similar to those of Earth to make it habitable for Terran organism, including humans. Terraforming is a common concept in science fiction. In fact, Jack Williamson, a science fiction writer, coined the term in 1942. But the first to use the concept was H.G. Wells in his The War of the Worlds (1898), where the martian invaders start a terraforming-reverse process in order to change our planet for their own benefit. Recent work in fiction exploring this concept includes the wonderful Mars Trilogy by Kim Stanley Robinson that has filled our dreams about the red planet with astonishing details

Kim Stanley Robinson with his Mars Trilogy has been one of the major inspirators of our work. They are really worth reading books.

In the scientific field, the first one who talk about terraforming of Mars was the ever-inspirational planetary astronomer Carl Sagan in The Long Winter Model of Martian Biology: A Speculation (1971) and in Planetary engineering on Mars (1973) both published in Icarus. In [http://www.youtube.com/watch?v=XzVYwyxidDY Blues for the Red Planet], the fifth episode of his mythical television series Cosmos: A personal Voyage, he exposes his ideas to the public. Sagan’s plan for terraforming of Mars implies seeding its polar casquets with dark plants. These plants will be artificially selected or genetically modified to resist and “survive” the harsh conditions of Mars climate. The positive point gained with this seeding will be realeasing oxygen and darkening the martian surface, melting down the polar casquets and liberating the ancient martian atmosphere trapped in there. This fusion water could be transported to the equator by the construction of a network of channels, similarly to the one Percival Lowell believed an inexistent Martian civilization had constructed. Sagan’s opinion about the ethics of this terraforming process, in the case the planet result not sterile is categorical:

"If there is life on Mars, then I believe we should do nothing to disturb that life. Mars, then, belongs to the Martians, even if they are microbes."
Carl Sagan, the first scientist who study the terraforming of Mars, holds a model of the red planet in his hands (Hulton Archive/Getty Images).

In the last years several review works about the concept of terraforming have appeared in the scientific literature. McKay and Marinova (2001) review the general aspects regarding the planetary ecosynthesis in the red planet and the ethics of that process. Graham (2004) has focused in the biological aspects of the creation of a biosphere on Mars and has delineated the stages of such a process. Finally Beech has written a book Terraforming: The Creation of Habitable Worlds (2009) in which the terraforming process is exhaustively analysed. To delve deeper into this exciting process, we recommend the reading of such works and the survey of the ethics of terraforming that we have written.

Why Mars?

In the actual conditions of Mars there is no organism able to survive and in no way grow. However, increasing evidences are revealing a different and biologically interesting ancient history (McKay, 2010). This early wetter and warmer martian conditions are the primary basis for carry out a planetary ecosynthesis on Mars. Table 1 from McKay and Marinova (2001) compares selected environmental and physical parameters between Mars and our cradle planet. Modifying the physical properties of Mars is impossible with the current technology, but some of these properties are very similar to those of Earth. For example the day length and the obliquity. The major differences as the year and season length, the lower surface sunlight and gravity may be no important obstacles in the creation of a biosphere (McKay and Marinova, 2001). Thus, the