Team:SDU-Denmark/safety-b
From 2010.igem.org
Project safety
Safety Concerns During Election of Project
In electing a project there were numerous ideas to be considered. They were divided into the following categories: the environment, foods, health & disease, physics/chemistry/biochemistry and finally other which included some more artistic ideas along with a few humorous ones (like the jeopardy bacteria – knows all the right questions). Especially while thinking about medical ideas for implementing in the body we knew there were serious risk issues that had to be considered because of the many ways bacteria may interact with the human body.
During our closer investigations of project ideas we also considered which bacteria it was possible to use. Our focus was to try and find a project that was possible to carry out by using E. coli. The reasons here for being that (cultivated strains of) E. coli are very well adapted to the laboratory environment since they are easy to keep alive, they can be fairly easy modified and unlike some wild strains of E. coli they no longer have the ability to thrive inside the intestines. Despite of these considerations we started out working on a project we called mE.chanic (because we wanted to make bacteria do mechanical work), and the idea was to have a culture of bacteria contract and relax, thereby making a pump-like movement creating mechanical work.
BILLLLLLEEEDDDDEEEE
Now, we found out that we could use pili as some sort of ‘grappling hooks’ to make a connection between the bacteria. Pili from E.coli had been measured to have a pulling force of about 100 pN (enough to work a nano-machine), and so it seemed that we would have a good chance of making usable mechanical work if we continued this idea. We just needed to find out how to control the formation and retraction of the pili.
The project turned out to be most likely to succeed if we used the pathogenic bacteria Pseudomonas Aeruginosa, because it is very good at making the type VI pili we wanted. But, that is unfortunately due to its pathogenicity since the pili are an important part of this, as they are used for the bacteria to stay put and not get washed away. So using P. Aeruginosa was immediately out of the question because the risk of personal health (fx. getting a cystitis infection) for the researchers was too high, since they are students and not yet fully educated scientists. Also it would be a potential danger for the surrounding community if it spread. So instead we started to investigate the possibilities of using E. coli, but then found that [bacterial name] was a non-pathogenic bacteria with close resemblance to P. Aeruginosa, and also with resemblance to E.coli. So we started working with it. Eventually though, we had to discard this project idea on a safety basis: We had serious doubts that we could succeed with P. Aeruginosa, given that we basically didn’t believe the bacteria would function with all the genes we needed to provide it with (pili are virulence factors, and working with a non-pathogenic bacteria it would be less likely to make enough pili / keep its pili).
Then our thought was to use E. coli and provide it with pili, but this started a long discussion about whether this would make the E. coli potentially pathogenic. The end of the discussion was to give our project a big make-over keeping the concept of wanting to make mechanical work, but changing the idea of the actual mechanical work to be done.
We finally decided on the project of Bacterial Micro Flow, and the safety issues in relation to this project will be presented in the following. These include issues of researchers’ safety, public safety and environmental safety. We will also look at safety in relation to the specific biobricks we use and make, and will have a chapter on what the safety-staff at our university think of this project. Now, let us start at the lab.
Researcher Safety