Team:Newcastle/Our Abstract

From 2010.igem.org

(Difference between revisions)
(New page: {{Team:Newcastle/mainbanner}} BacillaFilla, an engineered Bacillus subtilis, aims to repair microcracks in concrete, which can cause catastrophic structural failure. BacillaFilla would be...)
Line 1: Line 1:
{{Team:Newcastle/mainbanner}}
{{Team:Newcastle/mainbanner}}
 +
'''Title:'''
 +
BacillaFilla: Filling Microcracks in Concrete
 +
 +
'''Abstract:'''
BacillaFilla, an engineered Bacillus subtilis, aims to repair microcracks in concrete, which can cause catastrophic structural failure. BacillaFilla would be applied to structures by spraying onto their surface.
BacillaFilla, an engineered Bacillus subtilis, aims to repair microcracks in concrete, which can cause catastrophic structural failure. BacillaFilla would be applied to structures by spraying onto their surface.
The Bacillus swims deep into the microcracks. Repair is effected by production of CaCO3, filamentous cells and Levansucrose. CaCO3 expands at the same rate as concrete, making it the ideal filler. A filamentous cell mesh provides reinforcement. Levansucrose glues CaCO3 and filamentous cells in place.
The Bacillus swims deep into the microcracks. Repair is effected by production of CaCO3, filamentous cells and Levansucrose. CaCO3 expands at the same rate as concrete, making it the ideal filler. A filamentous cell mesh provides reinforcement. Levansucrose glues CaCO3 and filamentous cells in place.

Revision as of 10:58, 1 October 2010

iGEM Homepage Newcastle University BacillaFilla Homepage Image Map

Title: BacillaFilla: Filling Microcracks in Concrete

Abstract: BacillaFilla, an engineered Bacillus subtilis, aims to repair microcracks in concrete, which can cause catastrophic structural failure. BacillaFilla would be applied to structures by spraying onto their surface. The Bacillus swims deep into the microcracks. Repair is effected by production of CaCO3, filamentous cells and Levansucrose. CaCO3 expands at the same rate as concrete, making it the ideal filler. A filamentous cell mesh provides reinforcement. Levansucrose glues CaCO3 and filamentous cells in place. B. subtilis 168 sporulates, making it ideal for storage and transportation. The cells are naturally tolerant to concrete's high pH. We repaired 168's defective swrA and sfp, regaining motility. At the end of the crack the quorum communication peptide subtilin triggers a co-ordinated population response from a subtilin-inducible promoter. Upregulating SR1 and rocF promotes arginine and urea production, increasing exogenous CaCO3 deposition. Over-producing yneA induces the filamentous cell phenotype, while SacB converts extracellular sucrose to levansucrose glue.


Newcastle University logo.png    Newcastle cbcb logo.pngNewcastle Biomedicine logo.gif    Team Newcastle CEG logo.gif
Newcastle iww logo.jpg  UNIPV Pavia Logo.gif  Newcastle BBSRC.gif    Newcastle Genevision logo.png Newcastle WelcomeTrust.jpg
FaceBook Icon