Team:St Andrews/project/modelling/models/RK4

From 2010.igem.org

(Difference between revisions)
(Mathematical basis)
Line 10: Line 10:
=Mathematical basis=
=Mathematical basis=
-
TEXT
+
While the strict mathematical derivation of the Runge-Kutta method is available( see [http://www.ss.ncu.edu.tw/~lyu/lecture_files_en/lyu_NSSP_Notes/Lyu_NSSP_AppendixC.pdf here for details] ), we omit it here and instead give a brief explanation of the principles behind the technique.

Revision as of 10:02, 13 September 2010


St Andrews from East Sands

University of St Andrews iGEM 2010

Welcome!

The Saints

University of St Andrews iGEM 2010

Our first year at iGEM!

Foruth Order Runge-Kutta Method

Introduction

Our method of solving differential equations is based on Fourth Order Runge-Kutta Method. This technique is the most widely used way of numerically solving differential equations and various methods of implementation were looked at. Most of our coding has been based on the work of Aberdeen 2009 iGEM team who used the same method in their modelling. We would like to thank the team for their work and making it available to others like us for future use.

Mathematical basis

While the strict mathematical derivation of the Runge-Kutta method is available( see [http://www.ss.ncu.edu.tw/~lyu/lecture_files_en/lyu_NSSP_Notes/Lyu_NSSP_AppendixC.pdf here for details] ), we omit it here and instead give a brief explanation of the principles behind the technique.