Team:Alberta/Achievements/Overview

From 2010.igem.org

(Difference between revisions)
(BioByte 2.0)
(DNA Attachment)
Line 22: Line 22:
<div id="horiz-line"></div>
<div id="horiz-line"></div>
<p>
<p>
-
The next major step in the development of GENOMIKON was to successfully attach the BioByte 2.0 anchor to poly-T iron micro beads. This was demonstrated by attaching a 1kbp anchor-AB KanR to the iron micro beads, then eluting it off of the beads.</p>
+
The next major step in the development of GENOMIKON was to successfully attach the BioBytes 2.0 anchor to poly-T iron micro beads. This was demonstrated by attaching a 1kbp anchor-AB KanR to the iron micro beads, then eluting it off of the beads.</p>
[[Image:Alberta Elution Gel.jpg|center]]
[[Image:Alberta Elution Gel.jpg|center]]
<p>
<p>
-
As we can see, all of the 1kbp anchor-AB KanR is removed in the initial elution and none remains attached to the beads in the subsequent wash step. This is also true of the two BioByte 2.0 construct seen on the right that is a 2kbp piece added to a 1kbp piece.
+
As we can see, all of the 1kbp anchor-AB KanR is removed in the initial elution and none remains attached to the beads in the subsequent wash step. This is also true of the two BioBytes 2.0 construct seen on the right that is a 2kbp piece added to a 1kbp piece.
</p>
</p>

Revision as of 03:03, 27 October 2010

TEAM ALBERTA

BioBytes 2.0

The first major accomplishment of our project was to optimize the BioBytes 2.0 standard for parts and the assembly of those parts into useful transformable constructs. This was done very early on, but was essential for the progression and success of the remainder of the project.

DNA Attachment

The next major step in the development of GENOMIKON was to successfully attach the BioBytes 2.0 anchor to poly-T iron micro beads. This was demonstrated by attaching a 1kbp anchor-AB KanR to the iron micro beads, then eluting it off of the beads.

Alberta Elution Gel.jpg

As we can see, all of the 1kbp anchor-AB KanR is removed in the initial elution and none remains attached to the beads in the subsequent wash step. This is also true of the two BioBytes 2.0 construct seen on the right that is a 2kbp piece added to a 1kbp piece.

Octamer Construction

Gel showing octamer formation (Lane 3)

Our next major accomplishment was the assembly of a 12kbp construct made of 8 pieces of DNA using the BioByte 2.0 system. The octamer was assembled on an iron mirco bead, starting with the anchor, and adding alternating 1kbp pieces and a 2kbp pieces until the full 12kbp construct was achieved. This is seen in the third lane. A tetramer of the same construction is seen in the second lane.

It can be seen that the the major product of both the octamer and tetramer constructs was the complete construct. This was an exciting gel as the octamer was constructed in under 3 hours, a feat that would have taken more than a summer using the BioBrick method.

Transformation of E. coli with a Constructed Plasmid

The octamer showed that we could create long constructs out of pieces of DNA, so the next step was to construct a fully functional plasmid and test drive it in a cell. To do this, we started with a short construct that contained all the required parts of a plasmid. This also allowed us to test out the parts we had made specifically for this.

Alberta Tformplasmid.jpg

This plasmid is seen on the right and contains everything needed to function in vivo.

REPLACE WITH MIKE'S FIGURE

High School Student Transformations

Once we had transformed E. coli with constructs we made using BioBytes 2.0, we wanted to test the educational value of the project. To do this, we tried to same experiment with 5 high school students using the precision droppers.

Cells transformed with plasmids created by high school students
Each group of students got red fluorescent colonies on their plates, showing that high school students constructed their own plasmids using the BioBytes 2.0 assembly method.