Team:SDU-Denmark/project-t

From 2010.igem.org

(Difference between revisions)
(References)
(Phototaxis)
Line 13: Line 13:
<p style="text-align: justify;">
<p style="text-align: justify;">
<br>
<br>
-
Bacteria have evolved many modes of propulsion for the microscale environments they inhabit. At these scales materials behave very differently than at the macro-scale, and of particular interest to us is the way liquids seem more viscous. One of the many ways bacteria move around in liquids, is by means of flagella. A single flagellum is a thin filament around 0.1µm thick, that extends many cell lengths out from the cell. It consist mainly of flaggelin subunits that assemble into a helical structure forming  a long hollow cylindrical filament. In E. coli the mean number of flagella per cell is 4, but there is a wide variance between strains, and even between individual cells of each strain. The environment around the cell also has a large influence on how many flagellae are pressent, or if they are pressent at all, as we have learned! Flagella rotate to generate force that allows bacterial cells to swim through fluids in characteristic patterns, more on which later, in search of better conditions for proliferation or survival. Normally flagellated strains of E. coli can achieve speeds up to 20µm/sec, and considdering a cell length of only 1-2µm this is an impressive feat indeed.<br><br>
+
Bacteria have evolved many modes of propulsion for the microscale environments they inhabit. At these scales materials behave very differently than at the macro-scale, and of particular interest to us is the way liquids seem more viscous[[https://2010.igem.org/Team:SDU-Denmark/project-t#References 1]]. One of the many ways bacteria move around in liquids, is by means of flagella. A single flagellum is a thin filament around 0.1µm thick, that extends many cell lengths out from the cell. It consist mainly of flaggelin subunits that assemble into a helical structure forming  a long hollow cylindrical filament. In E. coli the mean number of flagella per cell is 4, but there is a wide variance between strains, and even between individual cells of each strain. The environment around the cell also has a large influence on how many flagellae are pressent, or if they are pressent at all, as we have learned! Flagella rotate to generate force that allows bacterial cells to swim through fluids in characteristic patterns, more on which later, in search of better conditions for proliferation or survival. Normally flagellated strains of E. coli can achieve speeds up to 20µm/sec, and considdering a cell length of only 1-2µm this is an impressive feat indeed.<br><br>
A flagellum  is anchored to the cell body by a large, wheel-like protein complex spanning both inner and outer membranes, through which the subunits are secreted to the tip of the flagellar tube, thus elongating the filament. (This mechanism is slightly different in archaea, where the filament is assembled from the base of the flagellum) The membrane anchor also functions as a rotary engine, driven by the proton motive force in much the same way the ATP-syntase is turned to create ATP from ADP. In fact the flagellar motor shares a lot of structural homology with the ATP-syntase, suggesting a common evolutionary ancestor. The flagellar motor rotates at up to 1000hz and can turn either clockwise or counter-clockwise, both resulting in a distinct movement pattern for the cell.<br><br>
A flagellum  is anchored to the cell body by a large, wheel-like protein complex spanning both inner and outer membranes, through which the subunits are secreted to the tip of the flagellar tube, thus elongating the filament. (This mechanism is slightly different in archaea, where the filament is assembled from the base of the flagellum) The membrane anchor also functions as a rotary engine, driven by the proton motive force in much the same way the ATP-syntase is turned to create ATP from ADP. In fact the flagellar motor shares a lot of structural homology with the ATP-syntase, suggesting a common evolutionary ancestor. The flagellar motor rotates at up to 1000hz and can turn either clockwise or counter-clockwise, both resulting in a distinct movement pattern for the cell.<br><br>

Revision as of 14:38, 26 October 2010