Team:TU Munich/Parts
From 2010.igem.org
Hartlmueller (Talk | contribs) |
|||
Line 14: | Line 14: | ||
{{:Team:TU Munich/Templates/ToggleBoxStart}} | {{:Team:TU Munich/Templates/ToggleBoxStart}} | ||
The malachitegreen-binding aptamer has been successfully used in screening systems being both robust and easy to produce. Aptamers provide specifities in the range of antibodies and can be evolved to target small molecules and proteins. [[Team:TU_Munich/Parts#ref2|[1]]] <br> | The malachitegreen-binding aptamer has been successfully used in screening systems being both robust and easy to produce. Aptamers provide specifities in the range of antibodies and can be evolved to target small molecules and proteins. [[Team:TU_Munich/Parts#ref2|[1]]] <br> | ||
- | Aside from the application as a mere reporter, the malachitegreen-binding aptamer has already been utilized to | + | Aside from the application as a mere reporter, the malachitegreen-binding aptamer has already been utilized to build up modular sensors which can together with another RNA-binding domain sense and report small molecules like ATP for example. This new detection method seems to provide promising future applications and sensors. Since the principle of modularizing fits well into our concept of building networks, we like to provide this part to allow further engineering considering ''in vitro'' sensing systems. [[Team:TU_Munich/Partst#ref3|[1]]] |
{{:Team:TU Munich/Templates/ToggleBoxEnd}} | {{:Team:TU Munich/Templates/ToggleBoxEnd}} | ||
Revision as of 16:13, 24 October 2010
|
||||||||
|
New PartsSingle PartsBBa_K494000
The malachitegreen-binding aptamer has been successfully used in screening systems being both robust and easy to produce. Aptamers provide specifities in the range of antibodies and can be evolved to target small molecules and proteins. [1] PlasmidsIn general we want to provide a new principle of gene regulation which can be further developed, tested and optimizted by everybody. Therefore we focus on providing the parts needed for verification and testing of new individual switches. We provide a plasmid which can be used for further cloning, a positive control to test the general functionality and the constructs we characterized for comparison. BBa_K494001New, better pSB1A10 We recloned pSB1A10 to improve its features as a measuring plasmid to evaluate terminators in vivo using fluorescent proteins as reporters. RFP which was known to contain an RNase restriction site was exchanged against mCherry which combines good expression yield, short maturation times and an acceptable and well-characterized quantum yield. For easy introduction of the terminator to be evaluated, we ?? ?? ?? BBa_K494002Positive control BBa_K494003With His-Term/Signal BBa_K494004With Trp-Term/Signal FalsificationpSB1A10
References[1] Babendure, J.R., S.R. Adams, and R.Y. Tsien, Aptamers switch on fluorescence of triphenylmethane dyes. J. Am. Chem. Soc, 2003. 125(48): p. 14716-14717. [2] Stead, S.L., et al., An RNA-Aptamer-Based Assay for the Detection and Analysis of Malachite Green and Leucomalachite Green Residues in Fish Tissue. Analytical chemistry. 82(7): p. 2652-2660. [3] Stojanovic, M.N. and D.M. Kolpashchikov, Modular aptameric sensors. J. Am. Chem. Soc, 2004. 126(30): p. 9266-9270. [4] https://2008.igem.org/Team:Heidelberg [5] Smolke and so on.... [6] http://en.wikipedia.org/wiki/Logic_gate#Symbols |