Team:SDU-Denmark/project-m

From 2010.igem.org

(Difference between revisions)
(3. Description of model)
(Physical Modelling)
Line 17: Line 17:
The bacterial flagellum consists of 3 major parts, a rotary motor complex, a hook and a filament. The first part creates the rotary motion of the flagellum and the second part serves as a flexible coupling between the torque creating part and the filament. For our model the filament is the most interesting part. This is responsible for the conversion of the rotary motion into a linear thrust. The filament is a self-assembling polymeric structure composed of flagellin protein subunits. These are arranged in a circular way to create a hollow helical structure, with a typical width of 120-250Å and a length of 10-15µm [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 2]]. A bacterium as ''E. coli'' typically has around 10 flagella [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 3]]. These filaments are able to adopt a wide range of conformations under the induced torque. Numeric studies [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 4-5]] and empiric results [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 6]] suggest that the conformation is strongly dependent on the hydrodynamic environment that surrounds the flagellum and its rotational direction. When several flagella rotates counterclockwise the flagella tends to bundle together in a single helix structure, due to the hydrodynamic interactions [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 4]]. A phosphorylationcascade causes the flagella to turn clockwise at irregular intervals. This induces a sequence of deformations that changes the single helix structure of the flagella and unravels the bundle. This is known as tumble mode. <br> </p>
The bacterial flagellum consists of 3 major parts, a rotary motor complex, a hook and a filament. The first part creates the rotary motion of the flagellum and the second part serves as a flexible coupling between the torque creating part and the filament. For our model the filament is the most interesting part. This is responsible for the conversion of the rotary motion into a linear thrust. The filament is a self-assembling polymeric structure composed of flagellin protein subunits. These are arranged in a circular way to create a hollow helical structure, with a typical width of 120-250Å and a length of 10-15µm [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 2]]. A bacterium as ''E. coli'' typically has around 10 flagella [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 3]]. These filaments are able to adopt a wide range of conformations under the induced torque. Numeric studies [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 4-5]] and empiric results [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 6]] suggest that the conformation is strongly dependent on the hydrodynamic environment that surrounds the flagellum and its rotational direction. When several flagella rotates counterclockwise the flagella tends to bundle together in a single helix structure, due to the hydrodynamic interactions [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 4]]. A phosphorylationcascade causes the flagella to turn clockwise at irregular intervals. This induces a sequence of deformations that changes the single helix structure of the flagella and unravels the bundle. This is known as tumble mode. <br> </p>
<br>
<br>
-
[[Image:Team-SDU-Denmark-2010-The_real1.jpeg|thumb|center|550px|'''Figure 2.1''': Image '''A''' shows a shematic picture of the molecular structure of a flagellum [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 7]]. Picture '''B''' and '''C''' shows  the flagella of bacteria stuck to a surface and flagella bundels on a moving bacteria, respectively [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 6]].]]
+
[[Image:Team-SDU-Denmark-2010-The_real1.jpeg|thumb|center|550px|'''Figure 1''': Image '''A''' shows a shematic picture of the molecular structure of a flagellum [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 7]]. Picture '''B''' and '''C''' shows  the flagella of bacteria stuck to a surface and flagella bundels on a moving bacteria, respectively [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 6]].]]
<br>
<br>
-
<p style="text-align: justify;">To be able to model the flow created by a bacterial coating of a tube it is essential to know what kind of flowfield a single flagellum/bundle will create. This has primarily been investigated by numerical approaches, where the flagella are modelled as semiflexible hookian systems. Several studies [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 4-5]] suggests that the flow created from a single flagellum is highly non-uniform, but to some degree circular symmetric at the end of the flagellum (see figure 2.2 A and B, below). When the flagella bundle together Floresa, H. ''et al.'' [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 4]] suggests that this symmetry becomes less clear and flow becomes even more complicated.
+
<p style="text-align: justify;">To be able to model the flow created by a bacterial coating of a tube it is essential to know what kind of flowfield a single flagellum/bundle will create. This has primarily been investigated by numerical approaches, where the flagella are modelled as semiflexible hookian systems. Several studies [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 4-5]] suggests that the flow created from a single flagellum is highly non-uniform, but to some degree circular symmetric at the end of the flagellum (see figure 2 A and B, below). When the flagella bundle together Floresa, H. ''et al.'' [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 4]] suggests that this symmetry becomes less clear and flow becomes even more complicated.
</p> <br>
</p> <br>
-
[[Image:Team-SDU-Denmark-2010-The_real2.jpeg|thumb|center|550px|'''Figure 2.2''': Picture '''A''' shows a cross section of a flowfield from a flagella modelled by Floresa, H. ''et al.''[[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 4]]. Picture '''B''' shows the symmetry in the flagella flowfield depicted by Reicherta, M. ''et al.'' [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 5]].]]
+
[[Image:Team-SDU-Denmark-2010-The_real2.jpeg|thumb|center|550px|'''Figure 2''': Picture '''A''' shows a cross section of a flowfield from a flagella modelled by Floresa, H. ''et al.''[[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 4]]. Picture '''B''' shows the symmetry in the flagella flowfield depicted by Reicherta, M. ''et al.'' [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 5]].]]
<br>
<br>
<p style="text-align: justify;">All these results refer to flagella moving freely in aqueous solution, the question is now, whether the same is true for bacteria stricking to the surface of a narrow tube? Turner, L. ''et al.'' [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 6]] suggests that bacteria completely fixed to a surface will deviate from the bundel behavior, but it is unclear what happens if the fixation is more partial or if the bacteria are surrounded by a flow.
<p style="text-align: justify;">All these results refer to flagella moving freely in aqueous solution, the question is now, whether the same is true for bacteria stricking to the surface of a narrow tube? Turner, L. ''et al.'' [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 6]] suggests that bacteria completely fixed to a surface will deviate from the bundel behavior, but it is unclear what happens if the fixation is more partial or if the bacteria are surrounded by a flow.
Line 65: Line 65:
</p>
</p>
-
[[Image:Team-SDU-Denamrk-Pointforces_notxt.jpg|thumb|center|580px|All 3 images show the flowfield created by a pointforce at (0.000007,0.000007) with an angle of 45 degrees with the x-axis. In the first image there are no walls. In the 2nd a wall is placed at y=0. In the 3rd one wall is placed at y=0 and one at y=0.000015]]  
+
[[Image:Team-SDU-Denamrk-Pointforces_notxt.jpg|thumb|center|580px|'''Figure 3''' All 3 images show the flowfield created by a pointforce at (0.000007,0.000007) with an angle of 45 degrees with the x-axis. In the first image there are no walls. In the 2nd a wall is placed at y=0. In the 3rd one wall is placed at y=0 and one at y=0.000015]]  
<p style="text-align: justify;">
<p style="text-align: justify;">
As the above figures show, there is quite a difference depending on how many walls you take in to consideration. We decided to keep working with both the single-wall and the double-wall flowfields.
As the above figures show, there is quite a difference depending on how many walls you take in to consideration. We decided to keep working with both the single-wall and the double-wall flowfields.

Revision as of 14:52, 24 October 2010