Team:Imperial College London/Modelling/Output/Parameters and Constants
From 2010.igem.org
(Difference between revisions)
m |
m |
||
Line 7: | Line 7: | ||
</html> | </html> | ||
|} | |} | ||
+ | {| style="width:900px;background:#f5f5f5;text-align:justify;font-family: helvetica, arial, sans-serif;color:#555555;margin-top:25px;" cellspacing="20" | ||
+ | |style="font-family: helvetica, arial, sans-serif;font-size:2em;color:#ea8828;"|Output Amplification Model | ||
+ | |- | ||
+ | |<html><h2>Parameters & Constants</h2></html><html> | ||
+ | <table width="775px" border="0"> | ||
+ | |||
+ | <tr> | ||
+ | <td style="background-color:#FFFF66;height:50px;width:75;text-align:center;font-family: helvetica, arial, sans-serif;color:#555555;"><b>Type of Constant</b> | ||
+ | </td> | ||
+ | <td style="background-color:#FFFF99;height:50px;width:700;text-align:center;font-family: helvetica, arial, sans-serif;color:#555555;"><b>Derivation of Value</b> | ||
+ | </td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="background-color:#FFCC66;height:100px;text-align:center; font-family: helvetica, arial, sans-serif;color:#555555;"><b>TEV Enzyme Dynamics</b> | ||
+ | </td> | ||
+ | <td style="background-color:#e7e7e7;height:100px;text-align:center;font-family: helvetica, arial, sans-serif;color:#555555;">Enzymatic Reaction: E+S <var>↔</var> ES <var>→</var> E+P | ||
+ | <br /> | ||
+ | Let | ||
+ | <ul> | ||
+ | <li>k<sub>1</sub> = rate constant for E+S <var>→</var> ES | ||
+ | <li>k<sub>2</sub> = rate constant for E+S <var>←</var> ES</math> | ||
+ | <li>k<sub>cat</sub> = rate constant for ES <var>→</var> E+P | ||
+ | </ul> | ||
+ | We know that K<sub>m</sub> = (k<sub>cat</sub> + k<sub>2</sub>)/k<sub>1</sub> | ||
+ | |||
+ | Assuming that k<sub>cat</sub> << k<sub>2</sub> << k<sub>1</sub>, we can rewrite K<sub>m</sub> <var>≈</var> k<sub>2</sub>/k<sub>1</sub> | ||
+ | <br /> | ||
+ | From this paper <a href="http://peds.oxfordjournals.org/cgi/reprint/14/12/993">[1]</a> the constants for TEV can be found: | ||
+ | <br /> | ||
+ | For example, for wildtype TEV: K<sub>m</sub> = 0.061<var>±</var>0.010mM and k<sub>cat</sub> = 0.16<var>±</var>0.01s<sup>-1</sup> | ||
+ | <br /> | ||
+ | These values correspond with our assumption that k<sub>cat</sub> = 0.1 s<sup>-1</sup> and K<sub>m</sub> = 0.01 mM. | ||
+ | <br /> | ||
+ | Hence, we can estimate the following orders of magnitude for the rate constants: | ||
+ | <br /> | ||
+ | k<sub>1</sub> = 10<sup>8</sup>M<sup>-1</sup>s<sup>-1</sup> | ||
+ | <br /> | ||
+ | k<sub>2</sub> = 10<sup>3</sup>s<sup>-1</sup> | ||
+ | <br /> | ||
+ | Using these values should be a good approximation for our model. | ||
+ | </td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="background-color:#FFCC66;height:100px;text-align:center; font-family: helvetica, arial, sans-serif;color:#555555;"><b>Degradation rate (common for all)</b> | ||
+ | </td> | ||
+ | <td style="background-color:#e7e7e7;height:100px;text-align:center;font-family: helvetica, arial, sans-serif;color:#555555;">Assumption: To be approximated by cell division (dilution of media) as none of the proteins are involved in any active degradation pathways | ||
+ | Growth rate, gr (divisions/h): 0.53 <var>≤</var> gr <var>≤</var> 2.18 <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC235685/pdf/jbacter00326-0019.pdf">[2]</a> | ||
+ | <br /> | ||
+ | Hence on average, gr = 1.5 divisions per hour, which gives one division every 40mins | ||
+ | <br /> | ||
+ | To deduce degradation rate we use the following formula: | ||
+ | <br /> | ||
+ | <var>τ</var><sub>1/2</sub> = ln2/k, where <var>τ</var><sub>1/2</sub> = 0.667 hours and k = degradation rate | ||
+ | <br /> | ||
+ | k = ln2/<var>τ</var><sub>1/2</sub> = 0.000289s<sup>-1</sup> | ||
+ | </td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="background-color:#FFCC66;height:100px;text-align:center; font-family: helvetica, arial, sans-serif;color:#555555;"><b>Production rate (TEV and Dioxygenase)</b> | ||
+ | </td> | ||
+ | <td style="background-color:#e7e7e7;height:100px;text-align:center;font-family: helvetica, arial, sans-serif;color:#555555;">We had difficulties finding values of the production rate in the literature and we hope to be able to perform experiments to obtain those values (for TEV protease and catechol 2,3-dioxygenase). Before any values can be obtained from the Lab, we suggest very simplistic approach for estimating production rates. | ||
+ | <br /> | ||
+ | We have found production rates for two arbitrary proteins in E.Coli. We want to get estimates of production rates by comparing the lengths of the proteins (number of amino-acids). | ||
+ | <br /> | ||
+ | As this approach is very vague, it is important to realise its limitations and inconsistencies: | ||
+ | <ul> | ||
+ | <li>Values are taken from E.Coli not B.sub.</li> | ||
+ | <li>The two production rates are of the same value for quite different amino-acid number which indicates that protein folding is limiting the production rates.</li> | ||
+ | </ul> | ||
+ | LacY production = 100 molecules/min<a href="http://bionumbers.hms.harvard.edu/bionumber.aspx?s=y&id=100738&ver=0&hlid=29205">[3]</a> (417 Amino Acids<a href="http://www.uniprot.org/uniprot/P02920">[4]</a>) | ||
+ | <br /> | ||
+ | LacZ production = 100 molecules/min<a href="http://bionumbers.hms.harvard.edu/bionumber.aspx?s=y&id=100737&ver=0&hlid=29206">[5]</a> (1024 AA<a href="http://www.uniprot.org/uniprot/P00722">[6]</a>) | ||
+ | <br /> | ||
+ | Average production ≈ 100molecules/min 720 AA | ||
+ | <br /> | ||
+ | This gives us: | ||
+ | TEV production ≈ 24 molecules/min = 0.40 molecules/s (3054 AA<a href="http://www.uniprot.org/uniprot/P04517">[7]</a>) | ||
+ | <br /> | ||
+ | As production rate needs to be expressed in concentration units per unit volume, the above number is converted to mols/s and divided by the cell volume: 2.3808×10<sup>-10</sup> mol/dm<sup>3</sup>/s | ||
+ | <br /> | ||
+ | C23D production ≈ 252 molecules/min = 4.2 molecules/s (285 AA<a href="http://www.uniprot.org/uniprot/P54721#section_x-ref">[8]</a>) → 2.4998×10<sup>-9</sup> mol/dm<sup>3</sup>/s | ||
+ | <br /> | ||
+ | We will treat these numbers as guiding us in terms of range of orders of magnitudes. We will try to run our models for variety of values and determine system’s limitations. | ||
+ | </td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="background-color:#FFCC66;height:100px;text-align:center; font-family: helvetica, arial, sans-serif;color:#555555;"><b>Kinetic Parameters of Dioxygenase</b> | ||
+ | </td> | ||
+ | <td style="background-color:#e7e7e7;height:100px;text-align:center;font-family: helvetica, arial, sans-serif;color:#555555;">Initial velocity of the enzymatic reaction was investigated at pH 7.5 and 30 °C. | ||
+ | <br /> | ||
+ | Wild type (used for our simulations): K<sub>m</sub> = 10 <var>μ</var>M; k<sub>cat</sub> = 52s<sup>-1</sup> | ||
+ | <br /> | ||
+ | Mutated type: K<sub>m</sub> = 40 <var>μ</var>M; k<sub>cat</sub> = 192s<sup>−1</sup> | ||
+ | <br /> | ||
+ | Consequently, the ratio of K<sub>m</sub>/k<sub>cat</sub> of the mutant (K<sub>m</sub>/k<sub>cat</sub> = 4.8) is slightly lower than the ratio of the wild type (K<sub>m</sub>/k<sub>cat</sub> = 5.2), indicating that the mutation has little effect on the catalytic efficiency <a href="http://www.springerlink.com/content/e3718758m5052214/fulltext.pdf">[9]</a>. | ||
+ | </td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="background-color:#FFCC66;height:100px;text-align:center; font-family: helvetica, arial, sans-serif;color:#555555;"><b>Dimensions of B.sub cell</b> | ||
+ | </td> | ||
+ | <td style="background-color:#e7e7e7;height:100px;text-align:center;font-family: helvetica, arial, sans-serif;color:#555555;">Dimensions of B.sub (cylinder/rod shape) in rich media: | ||
+ | <br /> | ||
+ | diameter: d = 0.87<var>μ</var>m; length: l = 4.7<var>μ</var>m | ||
+ | <br /> | ||
+ | This gives: Volume= <var>π</var>d<sup>2</sup>l/4 = 2.793999<var>μ</var>m<sup>3</sup> <var>≈</var> 2.79×10<sup>-15</sup> dm<sup>3</sup> | ||
+ | </td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="background-color:#FFCC66;height:100px;text-align:center; font-family: helvetica, arial, sans-serif;color:#555555;"><b>Production Rate of split TEV</b> | ||
+ | </td> | ||
+ | <td style="background-color:#e7e7e7;height:100px;text-align:center;font-family: helvetica, arial, sans-serif;color:#555555;">Assuming that both parts of split TEV are half the size of the whole TEV (3054/2=1527 AA). | ||
+ | <br /> | ||
+ | The length of the coil is 90 AA. | ||
+ | <br /> | ||
+ | The whole construct is then: 1617 AA | ||
+ | <br /> | ||
+ | Therefore, split TEV production rate ≈ 1.2606×10<sup>-10</sup> mol/dm<sup>3</sup>/s | ||
+ | </td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="background-color:#FFCC66;height:100px;text-align:center; font-family: helvetica, arial, sans-serif;color:#555555;"><b>Relevant concentrations of Catechol</b> | ||
+ | </td> | ||
+ | <td style="background-color:#e7e7e7;height:100px;text-align:center;font-family: helvetica, arial, sans-serif;color:#555555;">We have catechol in the lab in powder form so we are only limited by it's solubility. | ||
+ | <br /> | ||
+ | For a concentration of 0.1 M with built up levels of dioxygenase the colour change happens within seconds. | ||
+ | <br /> | ||
+ | We will run our models for 0.1M ± several orders of magnitude to determine the smallest catechol concentration that will give a significant difference between the simple production response and the amplified response. | ||
+ | </td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | </html> | ||
+ | |||
+ | <html> | ||
+ | <b>References</b> | ||
+ | <ol> | ||
+ | <li>Kapust, R. et al (2001) Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Engineering. [Online] 14(12), 993-1000. Available from: http://peds.oxfordjournals.org/content/14/12/993.full.pdf+html [Accessed 20th August 2010]</li> | ||
+ | <li>Sargent, M. (1975) Control of Cell Length in Bacillus subtilis. Journal of Bacteriology. [Online] 123(1), 7-19. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC235685/pdf/jbacter00326-0019.pdf [Accessed 20th August 2010]</li> | ||
+ | <li>Milo, R., Jorgensen, P. & Springer, M. (2007) BioNumbers. [Online] Available from: http://bionumbers.hms.harvard.edu/bionumber.aspx?s=y&id=100738&ver=0&hlid=29205 [Accesed 25th August 2010]</li> | ||
+ | <li>UniProt Consortium (2002-2010) UniProt. [Online] Available from: http://www.uniprot.org/uniprot/P02920 [Accessed 24th August 2010]</li> | ||
+ | <li>Milo, R., Jorgensen, P. & Springer, M. (2007) BioNumbers. [Online] Available from: http://bionumbers.hms.harvard.edu/bionumber.aspx?s=y&id=100737&ver=0&hlid=29206 [Accesed 25th August 2010]</li> | ||
+ | <li>UniProt Consortium (2002-2010) UniProt. [Online] Available from: http://www.uniprot.org/uniprot/P00722 [Accessed 24th August 2010]</li> | ||
+ | <li>UniProt Consortium (2002-2010) UniProt. [Online] Available from: http://www.uniprot.org/uniprot/P04517 [Accessed 24th August 2010]</li> | ||
+ | <li>UniProt Consortium (2002-2010) UniProt. [Online] Available from: http://www.uniprot.org/uniprot/P54721#section_x-ref [Accessed 24th August 2010]</li> | ||
+ | <li>Wei, J. et al (2009) Rational Design of Catechol-2, 3-dioxygenase for Improving the Enzyme Characteristics. Appl Biochem Biotechnol. [Online] 162, 116-126. Available from: http://www.springerlink.com/content/e3718758m5052214/fulltext.pdf [Accessed 25th August 2010]</li> | ||
+ | </ol> | ||
+ | </body> | ||
+ | </div> |
Revision as of 15:13, 17 October 2010
Temporary sub-menu: Objectives; Detailed Description; Parameters & Constants; Results & Conclusion;Download MatLab Files; |
Output Amplification Model | ||||||||||||||||
Parameters & Constants
References
|