Team:SDU-Denmark/project-t

From 2010.igem.org

(Difference between revisions)
(Retinal biosynthesis)
(Background)
Line 89: Line 89:
<br><br>
<br><br>
The FlhD<sub>4</sub>C<sub>2</sub> hexamer acts as a transcription factor for the Class II genes, which encodes the basal body, that is embedded in the cell membrane as well as hook proteins, which are transported to the cell exterior through the basal body. Another Class II gene is the σ<sup>28</sup> transcription factor, which is responsible for the transcription of the Class III genes. This includes ''fliC'', which encodes the flagellin subunit that composes the flagella “tail”. To ensure that the Class III genes are not transcribed before the assembly of the basal body and the hook is complete another Class II protein FliM acts as an anti-sigma factor and bind σ<sup>28</sup>, thereby preventing the transcription of ''fliC''.<br><br>
The FlhD<sub>4</sub>C<sub>2</sub> hexamer acts as a transcription factor for the Class II genes, which encodes the basal body, that is embedded in the cell membrane as well as hook proteins, which are transported to the cell exterior through the basal body. Another Class II gene is the σ<sup>28</sup> transcription factor, which is responsible for the transcription of the Class III genes. This includes ''fliC'', which encodes the flagellin subunit that composes the flagella “tail”. To ensure that the Class III genes are not transcribed before the assembly of the basal body and the hook is complete another Class II protein FliM acts as an anti-sigma factor and bind σ<sup>28</sup>, thereby preventing the transcription of ''fliC''.<br><br>
-
Several studies regarding the motility of ''E. coli'' has shown the expression of the ''flhDC'' operon to be crucial [[https://2010.igem.org/Team:SDU-Denmark/project-t#References 15]][[https://2010.igem.org/Team:SDU-Denmark/project-t#References 16]]. These focused on insertion sequence (IS) elements upstream of the ''flhDC'' regulon. IS are sequences that can be inserted randomly within the DNA and therefore serve as an important factor in the plasticity of the ''E. coli'' genome as well as in many other organisms. Generally they do not encode any genes apart from those responsible for their movement within the genome, however, they can also serve as activators of neighboring genes, by disrupting repression or by the formation of hybrid promoters (Baker). In the beforementioned studies, bacteria containing an activating IS upstrem of the ''flhDC'' operon showed an increased motility compared to bacteria without this IS. It is therefore resonable to asume that by placing a constitutive active promoter in front of the ''flhDC'' operon, hyperflagellation will be induced.
+
Several studies regarding the motility of ''E. coli'' has shown the expression of the ''flhDC'' operon to be crucial [[https://2010.igem.org/Team:SDU-Denmark/project-t#References 15]][[https://2010.igem.org/Team:SDU-Denmark/project-t#References 16]]. These focused on insertion sequence (IS) elements upstream of the ''flhDC'' regulon. IS are sequences that can be inserted randomly within the DNA and therefore serve as an important factor in the plasticity of the ''E. coli'' genome as well as in many other organisms. Generally they do not encode any genes apart from those responsible for their movement within the genome, however, they can also serve as activators of neighboring genes, by disrupting repression or by the formation of hybrid promoters [[https://2010.igem.org/Team:SDU-Denmark/project-t#References 16]]. In the beforementioned studies, bacteria containing an activating IS upstrem of the ''flhDC'' operon showed an increased motility compared to bacteria without this IS. It is therefore resonable to asume that by placing a constitutive active promoter in front of the ''flhDC'' operon, hyperflagellation will be induced.
<br><br>
<br><br>

Revision as of 19:59, 27 October 2010