Team:SDU-Denmark/project-m

From 2010.igem.org

(Difference between revisions)
(A stationary 2-D model)
(Flagella dynamics)
Line 73: Line 73:
=== Flagella dynamics ===
=== Flagella dynamics ===
<p style="text-align: justify;">
<p style="text-align: justify;">
-
The next thing to be considered was how the flagella depends on the fluid flow, i.e. if we place a bacterium at an angle θ with the wall will it remain at that angle or will it get pulled around by the flow in the tube, thus changing its position. The two extreme situations would be either that the flagella stick very hard to the surface and are therefore unaffected by the flow or that they stick very gently to the surface and that their angle depends completely on the flow. In order to create an intermediate situation, we could constrain each flagellum with a harmonic potential, pulling it toward a favored angle (connected to the initial orientation of the fagella when it stick to the surface). We believe the answer lies somewhere in between the two extremes, but that does not mean the extremes can't tell us anything. We therefore decided to create a model in which the flagella keeps still, and one where they are affected by the flow and a potential. The size of the potential can always be set to zero if we want to study the flagella without an affecting potential.
+
The next thing to be considered was how the flagella depend on the fluid flow, i.e. if we place a bacterium at an angle θ with the wall, will it remain at that angle or will it get pulled around by the flow in the tube, thus changing its position? The two extreme situations would be either that the flagella stick very hard to the surface and are therefore unaffected by the flow or that they stick very gently to the surface and that their angle depends completely on the flow. In order to create an intermediate situation, we could constrain each flagellum with a harmonic potential, pulling it toward a favored angle (connected to the initial orientation of the fagella when it stick to the surface). We believe the answer lies somewhere in between the two extremes, but that does not mean the extremes can't tell us anything. We therefore decided to create a model in which the flagella keep still, and one where they are affected by the flow and a potential. The size of the potential can always be set to zero if we want to study the flagella without an affecting potential.
<br><br>
<br><br>
The basic idea then is that every flagella stuck to the surface creates their own flowfields. To get the entire flowfield we add together all the flowfields created by the individual flagella. In the case where the flagella are stationary the assumptions made so far actually shows the system. For flagella that are able to move it's a bit more tricky.<br>
The basic idea then is that every flagella stuck to the surface creates their own flowfields. To get the entire flowfield we add together all the flowfields created by the individual flagella. In the case where the flagella are stationary the assumptions made so far actually shows the system. For flagella that are able to move it's a bit more tricky.<br>
-
The first thing we had to figure out was how the flow created by all of the other flagella would affect one single flagellum. To do this we decided to approximate a flagellum as a string of spheres and use dragforce calculations to figure out the force with which the flowfields of the other flagella would affect the spheres. An image, showing some of the vectors involved and the procedure we used is shown below.
+
The first thing we had to figure out was how the flow created by all of the other flagella would affect one single flagellum. To do this we decided to approximate a flagellum as a string of spheres and use dragforce calculations to figure out the force with which the flowfields of the other flagella would affect the spheres. An image, showing some of the vectors involved and the procedure we used is shown below. <br>
[[Image:Team-SDU-Denmark-flagel.jpg|thumb|center|580px|'''Figure 4''': Sketch of the principial structure of the model.]]
[[Image:Team-SDU-Denmark-flagel.jpg|thumb|center|580px|'''Figure 4''': Sketch of the principial structure of the model.]]
-
First the fluid velocity at the given point is found. The method is the same whether there is 0, 1 or 2 walls, but the tensor used varies.
+
<br>First, the fluid velocity at the given point is found. The method is the same whether there is 0, 1 or 2 walls, but the tensor used varies. <br>
</p>
</p>
[[Image:Team-SDU-Denmark-Flow.gif|center]]
[[Image:Team-SDU-Denmark-Flow.gif|center]]
<p style="text-align: justify;">The dragforce created by the fluid on the sphere is calculated using the same formula we used in part 3</p>
<p style="text-align: justify;">The dragforce created by the fluid on the sphere is calculated using the same formula we used in part 3</p>
-
[[Image:Team-SDU-Denmark-2010-Force-2.gif|center]]
+
[[Image:Team-SDU-Denmark-2010-Force-2.gif|center]] <br>
-
<p style="text-align: justify;">Once we have the force we can use it to calculate the torque on the sphere, then we summarize the torques of the individual spheres to get the total torque </p>
+
<p style="text-align: justify;">Once we have the force, we can use it to calculate the torque on the sphere, then we summarize the torques of the individual spheres to get the total torque </p> <br>
[[Image:Team-SDU-Denmark-2010-Torque-2.gif|center]]
[[Image:Team-SDU-Denmark-2010-Torque-2.gif|center]]
-
<p style="text-align: justify;">We then transformed the torque to angular acceleration by dividing with the inertia. This is also where we introduce the potential, that we mentioned earlier</p>
+
<p style="text-align: justify;"><br>We then transformed the torque to angular acceleration by dividing with the inertia. This is also where we introduce the potential, that we mentioned earlier</p>
[[Image:Team-SDU-Denmark-2010-Acceleration-2.gif|center]]
[[Image:Team-SDU-Denmark-2010-Acceleration-2.gif|center]]
-
<p style="text-align: justify;">Now that we have the angular acceleration we can insert it into the equation of motion. This allows us to calculate the position of the flagella at the next timestep by using it's position at the current and at the previous timestep. </p>
+
<p style="text-align: justify;">Now that we have the angular acceleration, we can insert it into the equation of motion. This allows us to calculate the position of the flagella at the next timestep by using its position at the current and at the previous timestep. </p> <br>
[[Image:Team-SDU-Denmark-2010-Angle-2.gif|center]]
[[Image:Team-SDU-Denmark-2010-Angle-2.gif|center]]
   
   
-
<p style="text-align: justify;">In the end this model showed us that in less than 100ns the velocity of the flagella would be the same as the velocity of the fluid when the flagella started with a velocity of zero, after which the two velocities never diverged far from each other. Since the velocity of the flagella always went to the velocity of the fluid on such a short timescale and since these calculations took a lot of computerpower we decided that instead of force calculations we would simpy find the flow velocity at the tip of the flagellum and convert that directly to the angular velocity of the flagellum.
+
<p style="text-align: justify;"><br>In the end, this model showed us that in less than 100ns the velocity of the flagella would be the same as the velocity of the fluid when the flagella started with a velocity of zero, after which the two velocities never diverged far from each other. Since the velocity of the flagella always went to the velocity of the fluid on such a short timescale and since these calculations took a lot of computer power we decided that instead of force calculations we would simpy find the flow velocity at the tip of the flagellum and convert that directly to the angular velocity of the flagellum.
</p>
</p>

Revision as of 15:23, 27 October 2010