Team:SDU-Denmark/project-t

From 2010.igem.org

(Difference between revisions)
(Theory)
(Background)
Line 12: Line 12:
=== Background ===
=== Background ===
-
We want to be able to control, switching on and off, our flow through a remote signal. Our preferred signal is light, since light does not have any effect on the rest of the system and only interacts with the membrane receptor in E.Coli. This means that the probability of unwanted side effects is minimized, since there are no excess interactions between the signal and its target environment. <br><br>
+
We want to be able to control, switching on and off, our flow in a tube through a remote signal. Our preferred signal is light, since light does not have any effect on the rest of the system and only interacts with the membrane receptor in E.Coli. This means that the probability of unwanted side effects is minimized, since there are no excess interactions between the signal and its target environment. <br><br>
The type of light that we will use for this is bluelight, which functions as a repellent in our case. This will make the bacteria want to get away from the light source which in turn results in an increased tumbling frequency, why will be explained a little further down this text. Since we chose E.Coli as our model organism and wanted to use a light signal, we would have to increase it's sensitivity to bluelight, which naturally is very, very small. Thorugh research we found out that teh Halobacterium Salinarum has a very well researched phototaxis mechanism, where the individual membrain domais role in thr process had been solved AND transferred to E.Coli. Which means that we would have to pick up on that research and create this mechanism as biobricks. <br><br>
The type of light that we will use for this is bluelight, which functions as a repellent in our case. This will make the bacteria want to get away from the light source which in turn results in an increased tumbling frequency, why will be explained a little further down this text. Since we chose E.Coli as our model organism and wanted to use a light signal, we would have to increase it's sensitivity to bluelight, which naturally is very, very small. Thorugh research we found out that teh Halobacterium Salinarum has a very well researched phototaxis mechanism, where the individual membrain domais role in thr process had been solved AND transferred to E.Coli. Which means that we would have to pick up on that research and create this mechanism as biobricks. <br><br>
Line 23: Line 23:
<br> We will only have to add retinal to the system, which is needed for proper function of the fusion,chimera-protein. Therefore we want E.Coli to produce retinal on it's own, by transferring the gen for the enzyme that cleaves beta-carotene to retinal from flies (drosophilia). For the accumulation of beta-carotene we will use the biobrick BBa_K274210, which was constructed by the Cambridge team in 2009 [https://2009.igem.org/Team:Cambridge]. We will expand this brick's functionality by coupling it with the enzyme that cleaves beta-carotene to retinal. In that way we will be able to construct a retinal generator with the help of Cambridge's and our part. Here is a model of the retinal generator:<html><img width="600px" height="400px" src="https://static.igem.org/mediawiki/2010/c/cb/Team-SDU-Denmark-Retinal_generator.png"></img></html><br><br>  
<br> We will only have to add retinal to the system, which is needed for proper function of the fusion,chimera-protein. Therefore we want E.Coli to produce retinal on it's own, by transferring the gen for the enzyme that cleaves beta-carotene to retinal from flies (drosophilia). For the accumulation of beta-carotene we will use the biobrick BBa_K274210, which was constructed by the Cambridge team in 2009 [https://2009.igem.org/Team:Cambridge]. We will expand this brick's functionality by coupling it with the enzyme that cleaves beta-carotene to retinal. In that way we will be able to construct a retinal generator with the help of Cambridge's and our part. Here is a model of the retinal generator:<html><img width="600px" height="400px" src="https://static.igem.org/mediawiki/2010/c/cb/Team-SDU-Denmark-Retinal_generator.png"></img></html><br><br>  
In the end we want to split the whole fusion, chimer into two biobricks that can be fused as a composite part. By doing this we hopefully introduce biobricks that give E.Coli phototaxic abilities and also introduce modularity into the complex, so that it's signalling function can be coupled to other pathways than chemotaxis.<br><br>
In the end we want to split the whole fusion, chimer into two biobricks that can be fused as a composite part. By doing this we hopefully introduce biobricks that give E.Coli phototaxic abilities and also introduce modularity into the complex, so that it's signalling function can be coupled to other pathways than chemotaxis.<br><br>
 +
=== Biobrick design: ===
=== Biobrick design: ===

Revision as of 14:22, 7 July 2010