Team:BCCS-Bristol

From 2010.igem.org

(Difference between revisions)
m
m
Line 22: Line 22:
-
==Old Project Page (soon to be deleted)==
+
<!--==Old Project Page (soon to be deleted)==
Line 39: Line 39:
Our bacteria can be grown in quantity and then sprayed across the newly ploughed soil. The colour that the bacteria express may be difficult to see with the naked eye, so we recommend a more mechanised method. An ultraviolet light source can be fitted underneath the tractor or vehicle used to apply fertiliser to the field. This UV light will cause the bacteria to luminesce, and this luminescence can be detected by a camera on the tractor. The fertiliser being deployed by the tractor can then be stopped whenever it detects it is travelling over ground that is already high in nutrients. By this method, the use of fertiliser is limited only to areas with low levels of nutrients.</p>
Our bacteria can be grown in quantity and then sprayed across the newly ploughed soil. The colour that the bacteria express may be difficult to see with the naked eye, so we recommend a more mechanised method. An ultraviolet light source can be fitted underneath the tractor or vehicle used to apply fertiliser to the field. This UV light will cause the bacteria to luminesce, and this luminescence can be detected by a camera on the tractor. The fertiliser being deployed by the tractor can then be stopped whenever it detects it is travelling over ground that is already high in nutrients. By this method, the use of fertiliser is limited only to areas with low levels of nutrients.</p>
</html>
</html>
 +
-->

Revision as of 12:49, 27 October 2010


Soil Indicator Project

Many crop types need to be harvested and replanted from scratch on an annual basis. To maintain nutrient levels in the soil, farmers often have to put down considerable quantities of fertiliser. This is costly, and a fair proportion of it ends up landing on soil that has enough nutrients anyway. Additionally, some of the nutrients in the fertiliser are often washed away, affecting local ecosystems. This process is called eutrophication. This is a major environmental concern, as it can cause algal blooms that drain oxygen out of rivers and lakes, killing fish and other wildlife.

Our lab has developed and characterised a cheap, versatile soil fertility sensor based on an E.coli chassis. It expresses fluorescent signals upon nutrient detection, producing a high-resolution nutrient distribution map of arable land. The ratio of two fluorescent signals allows farmers to quantify soil nutrient content. agrEcoli bacteria, encapsulated within a gel container to improve visibility and prevent escape, have been shown to work on soil in lab conditions. We have explored the marketing of our device, considering public perceptions of synthetic biology. BSim, our prize-winning modelling framework, has been extended to analyse our new biobricks’ behaviour within gel capsules. In addition, a new interface for BSim has improved its accessibility to the wider synthetic biology community, facilitating collaboration. agrEcoli optimises fertiliser use, saving farmers' money and reducing environmental damage.

Final_Front_page_image.jpg