Week 26
Flagella
- Studied inhibition and activation FlhD/C operon.
- Found out that PskA is an important inhibitor, which also is part of ribosome synthesis.
Phototaxis
- Ordered proteorhodopsin biobrick [http://partsregistry.org/Part:BBa_I711040 I711040]
- Did research on the light-sensitive proteorhodopsin ionpump.
Week 27
Flagella
- Read up on the flagella regulon using following articles;
[http://ncbi.nlm.nih.gov/pmc/articles/PMC179437/pdf/1795602.pdf]
Cell Cycle Regulation of Flagellar Genes
Birgit M. Prüß and Philip Matsumura
Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612-7344
[http://ncbi.nlm.nih.gov/pubmed/7961507]
The FlhD/FlhC Complex, a Transcriptional Activator of the Escherichia coli Flagellar Class II Operons
Xiaoying Liu and Philip Matsumura
Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612-7344
- Decided to follow the popular "trial-and-error" method and test what effects it will have to put the FlhDC operon after a constitutive promoter.
- Ordered FlhD/C primers
Phototaxis
- Decided to go back to the original idea for controlling phototaxis via a SRII/HtrII/EcTsr fusion-chimeric protein described in the following article;
[http://pubs.acs.org/doi/abs/10.1021/bi034399q]
Photostimulation of a Sensory Rhodopsin II/HtrII/Tsr Fusion Chimera Activates CheA-Autophosphorylation and CheY-Phosphotransfer in Vitro†
Vishwa D. Trivedi and, John L. Spudich
Biochemistry 2003 42 (47), 13887-13892
which is shown to work in K-12 E. coli in this article;
[http://jb.asm.org/cgi/content/full/183/21/6365]
An Archaeal Photosignal-Transducing Module Mediates Phototaxis in Escherichia coli
Jung, Kwang-Hwan, Spudich, Elena N., Trivedi, Vishwa D., Spudich, John L.
J. Bacteriol. 2001 183: 6365-6371
- Contacted the original researchers on the mentioned papers for protein sequences and plasmids
Retinal Production
- Decided to atempt to make our bacteria synthesize retinal endogenously.
- Designed a new BioBrick around the ninaB gene from D. melanogaster, that has been shown to produce a beta-carotene 15,15'-monooxygenase [http://www.jbc.org/content/275/16/11915.long][http://www.ncbi.nlm.nih.gov/pmc/articles/PMC14720/?tool=pubmed].
- Isolated the gene sequence, and suggested biobricks for the coding region (K343001)
- Proposed four biobricks
K343000 – FlhDCmut coding sequence
K343001 - Sandboxed coding sequence from ninaB gene.
K343002 - Sandboxed coding sequence from ninaB gene on one of the weaker Anderson promoters, with rbs and dual terminator.
K343003 - Sandboxed coding sequence for the SopII-HtrII-Tsr fusion protein.
References:
5. Filling the gap in vitamin A research. Molecular identification of an enzyme cleaving beta-carotene to retinal.,von Lintig J, Vogt K., J Biol Chem. 2000 Apr 21;275(16):11915-20.
6. Analysis of the blind Drosophila mutant ninaB identifies the gene encoding the key enzyme for vitamin A formation in vivo, Johannes von Lintig,* Armin Dreher, Cornelia Kiefer, Mathias F. Wernet, and Klaus Vogt, Proc Natl Acad Sci U S A. 2001 January 30; 98(3): 1130–1135.
Modelling
- Read articles about modelling the flagella movement and their influence on the water flow.
- Looked at the equations describing the system from the article to get an idea of how the physics is applied. The following articles was used in this progress;
[http://docs.google.com/viewer?a=v&pid=wave&srcid=8e-fLRxU2&chrome=true]
Synchronization in a carpet of hydrodynamically coupled rotors with random intrinsic frequency N. Uchida 1 and R. Golestanian 2, ELP(Europhysics Letters) volume 89, number 5.
[http://docs.google.com/viewer?a=v&pid=wave&srcid=sz1nqWu52&chrome=true]
The physics of flagellar motion of E. coli during chemotaxis M. Siva Kumar and P. Philominathan Biophysical Reviews Volume 2, Number 1 / February, 2010.
- Met with our advisor Associate professor Julian C. Shillcock, PhD (SDU) who helped us plan a model for the system using the article;
[http://docs.google.com/viewer?a=v&pid=wave&srcid=8e-fLRxU2&chrome=true]
Synchronization in a carpet of hydrodynamically coupled rotors with random intrinsic frequency N. Uchida 1 and R. Golestanian 2, ELP(Europhysics Letters) volume 89, number 5.
Week 28
Flagella
- Extracted FlhDC master operon from E. coli strain MG1655
- Showed pressence of pst1 site in FlhC
- Introduced silent mutation into FlhC
Retinal
- Transformed pSB1A2-J13002(TetR repressed generator), pSB1A2-K274210 (CrtEBIY under constitutive promoter), pSB1AK3-B0015 into E.coli MG1655
Modelling
- Discussed Stokes and Navier-Stokes equations in relation to the system we would like to model.
- Tied to identify a differential equation describing the system. The following physics books have been used:
The theory of polymer dynamics, M. DOI, S. F. Edwards, oxford science publications, 4. edition 1992.
Physics of continuous matter, B. Lautrup, IOP publishing, 2005.
- Started implementing our model.
Week 29
Flagella
Retinal
- pSB3C5-J04450 and pSB3T5-J04450 were transformed into E.coli TOP10 cells
- pSB1A2-R0011 was transformed into E.coli TOP10 cells
Week 30
- Ligated J13002 into pSB3T5
Week 31
Flagella
- Showing prescence of pst1 site in native FlhDC and anscence of pst1 site in mutated FlhDC
Week 32
Retinal
- Showing, by uV-VIS absorbance spectre, that TOP10- and MG1655-cells containing the K274210 biobrick(camebridge part)show grater absorbance than the wild types.
Week 33
No Progress Report
Week 34
Photosensor
- Transformed B0015 into pSB3T5
Week 35
Photosensor
- NpSopII-NpHtrII-StTar coding sequence was isolated from pKJ606
Week 36
Flagella
- flhD/Cmut was made using new mutaion primers
- flhD/Cmut was ligated into pSB1C3 and plasmid was transformed into E.coli TOP10 cells.
Photosensor
- NpSopII-NpHtrII-StTar coding sequence (K343003) was ligated into pSB1C3 and plasmid was transformed into E.coli Top10 cells.
- NpSopII-NpHtrII-StTar coding sequence (K343003) was assembled with the double terminator (B0015) in pSB1AK3-B0015 and plasmid was transformed into E.coli TOP10 cells
Week 37
Flagella
- FlhD/Cmut coding sequence (K343000) was assembled with the double terminator (B0015) in pSB1AK3-B0015 and plasmid was transformed into E.coli TOP10 cells.
Photosensor
- NpSopII-NpHtrII-StTar coding sequence (K343003) + double terminator (B0015) was assambled with promoter + RBS (J13002)in pSB3T5-J13002 and plasmid was transformed into E.coli TOP10 cells.
Week 38
Retinal
- NinaB coding sequence (K343001) was assembled with Promoter + RBS (J13002) and ligated into pSB1C3. Plasmid was ligated into E.coli TOP10 cells
Photosensor
- Results from sequencing of NpSopII-NpHtrII-StTar coding sequence (K343003) in pSB1C3 and NpSopII-NpHtrII-StTar coding sequence (K343003) + Promoter + RBS (J13002) in pSB1AK3 was OK
Week 39
Retinal
- NinaB coding sequence + Promoter + RBS (K343005) was assembled with the double terminator (B0015) in pSB1AK3-B0015 and plasmid was transformed into E.coli TOP10 cells.
- pSB1C3-K343005 and pSB1A2-K274210 (CrtEBIY under constitutive promoter) was transformed into E.coli TOP10 and MG1655 cells
week 40
Retinal
- NinaB coding sequence + Promoter + RBS (K343005) was assembled with the double terminator (B0015) in pSB1AK3-B0015 and transformed into E.coli TOP10 and MG1655 cells
Week 41
Flagella
- flhD/Cmut composite part (K343004) was ligated into pSB1C3 and pSB3K3 and plasmids were transformed into E.coli TOP10 and MG1655 cells.
Retinal
- NinaB composite part (K343006) was ligated into pSB1C3 and plasmid was transformed into E.coli TOP10 and MG1655 cells
Week 42
Flagella
- Results of sequencing of flhD/Cmut composite part (K343004) in pSB1C3 was OK
Photosensor
- MG1655/pSB3T5-K343007 (NpSopII-NpHtrII-StTar composite part) was sequenced on THOR from [http://www.unisensor.dk/ Unisensor]