Team:SDU-Denmark/project-m

From 2010.igem.org

(Difference between revisions)
(1. Motivation)
(2. The real system)
Line 11: Line 11:
</p>
</p>
-
=== 2. The real system ===
+
=== The real system ===
<p style="text-align: justify;">
<p style="text-align: justify;">
The "real" system that we want to model is a bacterial pump as described by M. J. Kim and K. S. Breuer  [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 1]]. This is in principle just a microscopic chamber with a flow channel 15µm deep, 200µm wide and 15mm long, covered on the inside by a layer of flagellated bacteria. The bacterial layer described by M. J. Kim and K. S. Breuer [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 1]] is very dense and uniform, with a spacing between each bacterium of less that 1µm and 80% of the bacteria adhered to the surface as single bacteria. To get a better understanding of the origin of the  flow created from the bacterial coating, it is important to understand the structure of the bacterial flagellum.
The "real" system that we want to model is a bacterial pump as described by M. J. Kim and K. S. Breuer  [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 1]]. This is in principle just a microscopic chamber with a flow channel 15µm deep, 200µm wide and 15mm long, covered on the inside by a layer of flagellated bacteria. The bacterial layer described by M. J. Kim and K. S. Breuer [[https://2010.igem.org/Team:SDU-Denmark/project-m#Litterature 1]] is very dense and uniform, with a spacing between each bacterium of less that 1µm and 80% of the bacteria adhered to the surface as single bacteria. To get a better understanding of the origin of the  flow created from the bacterial coating, it is important to understand the structure of the bacterial flagellum.

Revision as of 14:41, 24 October 2010