Team:SDU-Denmark/project-m

From 2010.igem.org

(Difference between revisions)
(7. Model expansions)
(4. Flagella dynamics)
Line 60: Line 60:
The basic idea now is that every flagella stuck to surface creates its own flowfield. To get the entire flowfield we add together all the flowfields created by the individual flagellum. In the case where the flagella are stationary that is basically it. For flagella that are able to move it's a bit more tricky.
The basic idea now is that every flagella stuck to surface creates its own flowfield. To get the entire flowfield we add together all the flowfields created by the individual flagellum. In the case where the flagella are stationary that is basically it. For flagella that are able to move it's a bit more tricky.
-
The first thing we had to figure out was how the flow created by all of the other flagella would affect one single flagellum. To do this we decided to approximate a flagellum as a string of spheres and use dragforce calculations to figure out the force with which the flowfields of the other flagella would affect the beads.
+
The first thing we had to figure out was how the flow created by all of the other flagella would affect one single flagellum. To do this we decided to approximate a flagellum as a string of spheres and use dragforce calculations to figure out the force with which the flowfields of the other flagella would affect the beads. The procedure is shown below.
-
<equation of motion>
 
   
   
This model showed us that in less than 100ns the velocity of the flagella would be the same as the velocity of the fluid when the flagella started with a velocity of zero, after that the two velocity never diverged far from each other. Since the velocity of the flagella always went to the velocity of the fluid on such a short timescale and since these calculations took a lot of computerpower we decided that instead of force calculations we would simpy find the flowvelocity at the tip of the flagellum and convert that directly to the angular velocity of the flagellum.
This model showed us that in less than 100ns the velocity of the flagella would be the same as the velocity of the fluid when the flagella started with a velocity of zero, after that the two velocity never diverged far from each other. Since the velocity of the flagella always went to the velocity of the fluid on such a short timescale and since these calculations took a lot of computerpower we decided that instead of force calculations we would simpy find the flowvelocity at the tip of the flagellum and convert that directly to the angular velocity of the flagellum.

Revision as of 19:04, 16 October 2010