Team:UPO-Sevilla/Biobricks/Parts
From 2010.igem.org
(Difference between revisions)
(9 intermediate revisions not shown) | |||
Line 10: | Line 10: | ||
<style type="text/css"> | <style type="text/css"> | ||
.table{ | .table{ | ||
- | margin: 2em | + | margin: 2em auto; |
} | } | ||
Line 61: | Line 61: | ||
text-align: center; | text-align: center; | ||
background: #F9FFAF; | background: #F9FFAF; | ||
- | |||
- | |||
- | |||
} | } | ||
td a { | td a { | ||
Line 80: | Line 77: | ||
</p> | </p> | ||
<p> | <p> | ||
- | BioBricks names give you information about the kind of BioBrick and it is a good way to work with a big quantity of parts ( | + | BioBricks names give you information about the kind of BioBrick and it is a good way to work with a big quantity of parts (<a href="http://partsregistry.org/Help:BioBrick_Part_Names" target="_blank">see more</a>). But it is hard to write these long names in a microcentrifuge tube! That is why we used a second numerical name for each part. Numerical names are easier to work with in the lab and also to organize the work. You will see this code next to standard names. This will help you to understand other issues of Bacterial Crowding project, like Circuits and Devices. |
</p> | </p> | ||
<div class="table"> | <div class="table"> | ||
Line 100: | Line 97: | ||
<td class="headRow" rowspan="4">Prh System</td> | <td class="headRow" rowspan="4">Prh System</td> | ||
<td>UPO-04</td> | <td>UPO-04</td> | ||
- | <td>BBa_K367000</td> | + | <td class="link"><a href="http://partsregistry.org/Part:BBa_K367000" target="_blank">BBa_K367000</a></td> |
- | <td>prhA</td> | + | <td><i>prhA</i></td> |
<td>Coding sequence</td> | <td>Coding sequence</td> | ||
<td>Synthesis</td> | <td>Synthesis</td> | ||
- | <td>Ralstonia solanacearum gene prhA, encoding an outer membrane protein | + | <td><i>Ralstonia solanacearum</i> gene <i>prhA</i>, encoding an outer membrane protein |
that senses a signal on plant cell walls and transduces it through the | that senses a signal on plant cell walls and transduces it through the | ||
bacterial cell envelop to stimulate transcription from several operons. | bacterial cell envelop to stimulate transcription from several operons. | ||
- | Optimized sequence to be expressed in Escherichia coli.</td> | + | Optimized sequence to be expressed in <i>Escherichia coli.</i></td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>UPO-05</td> | <td>UPO-05</td> | ||
- | <td>BBa_K367001</td> | + | <td class="link"><a href="http://partsregistry.org/Part:BBa_K367001" target="_blank">BBa_K367001</a></td> |
- | <td>prhR</td> | + | <td><i>prhR</i></td> |
<td>Coding sequence</td> | <td>Coding sequence</td> | ||
<td>Synthesis</td> | <td>Synthesis</td> | ||
- | <td>Ralstonia solanacearum gene prhR, encoding a membrane signal transduction | + | <td><i>Ralstonia solanacearum</i> gene <i>prhR</i>, encoding a membrane signal transduction |
protein involved in the Prh pathway. The nondiffusible plant cell wall | protein involved in the Prh pathway. The nondiffusible plant cell wall | ||
signal is transduced by the N-terminal extension of PrhA to the C-terminal | signal is transduced by the N-terminal extension of PrhA to the C-terminal | ||
part of the transmembrane protein PrhR and then through PrhR across the | part of the transmembrane protein PrhR and then through PrhR across the | ||
- | cytoplasmic membrane. Optimized sequence to be expressed in Escherichia coli.</td> | + | cytoplasmic membrane. Optimized sequence to be expressed <i>in Escherichia coli.</i></td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>UPO-06</td> | <td>UPO-06</td> | ||
- | <td>BBa_K367002</td> | + | <td class="link"><a href="http://partsregistry.org/Part:BBa_K367002" target="_blank">BBa_K367002</a></td> |
- | <td>prhI</td> | + | <td><i>prhI</i></td> |
<td>Coding sequence</td> | <td>Coding sequence</td> | ||
<td>Synthesis</td> | <td>Synthesis</td> | ||
- | <td>Ralstonia solanacearum gene prhI, encoding an ECF sigma factor responsible | + | <td><i>Ralstonia solanacearum</i> gene <i>prhI</i>, encoding an ECF sigma factor responsible |
for transcription dependent on the Prh signal transduction system. PrhI | for transcription dependent on the Prh signal transduction system. PrhI | ||
is activated by PrhR and then the sigma factor induces the expression by | is activated by PrhR and then the sigma factor induces the expression by | ||
- | activating | + | activating P<i>prhJ</i> promoter. Optimized sequence to be expressed in <i>Escherichia coli.</i></td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>UPO-11</td> | <td>UPO-11</td> | ||
- | <td>BBa_K367008</td> | + | <td class="link"><a href="http://partsregistry.org/Part:BBa_K367008" target="_blank">BBa_K367008</a></td> |
- | <td> | + | <td>P<i>prhJ</i></td> |
<td>Promoter</td> | <td>Promoter</td> | ||
<td>Synthesis</td> | <td>Synthesis</td> | ||
- | <td>The | + | <td>The P<i>prhJ</i> promoter region, responsive to plant cell contact via signal transduction |
by PrhA and PrhR and activation by ECF sigma factor PrhI. Optimized sequence to be | by PrhA and PrhR and activation by ECF sigma factor PrhI. Optimized sequence to be | ||
- | expressed in Escherichia coli.</td> | + | expressed in <i>Escherichia coli.</i></td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
<td class="headRow" >Hybrid Protein</td> | <td class="headRow" >Hybrid Protein</td> | ||
<td>UPO-07</td> | <td>UPO-07</td> | ||
- | <td>BBa_K367006</td> | + | <td class="link"><a href="http://partsregistry.org/Part:BBa_K367006" target="_blank">BBa_K367006</a></td> |
- | <td>fecA-prhA</td> | + | <td><i>fecA-prhA</i></td> |
<td>Coding sequence</td> | <td>Coding sequence</td> | ||
<td>Synthesis</td> | <td>Synthesis</td> | ||
- | <td>Artificial coding sequence spanning the first 92 codons of fecA, encoding the signal | + | <td>Artificial coding sequence spanning the first 92 codons of <i>fecA</i>, encoding the signal |
peptide (aa. 1-33), the proposed Ton-box (aa. 54-63), fused to the distal end of | peptide (aa. 1-33), the proposed Ton-box (aa. 54-63), fused to the distal end of | ||
- | the prhA coding sequence at the conserved GSGL motif (aa. 89-92). This hybrid | + | the <i>prhA</i> coding sequence at the conserved GSGL motif (aa. 89-92). This hybrid |
protein allows to sense nondifusible signals and to transduce it by the well known | protein allows to sense nondifusible signals and to transduce it by the well known | ||
- | Fec pathway. Optimized sequence to be expressed in Escherichia coli.</td> | + | Fec pathway. Optimized sequence to be expressed in <i>Escherichia coli.</i></td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td class="headRow" rowspan=" | + | <td class="headRow" rowspan="5">Fec System</td> |
<td>UPO-08</td> | <td>UPO-08</td> | ||
- | <td>BBa_K367003</td> | + | <td class="link"><a href="http://partsregistry.org/Part:BBa_K367003" target="_blank">BBa_K367003</a></td> |
- | <td>fecA</td> | + | <td><i>fecA</i></td> |
<td>Coding sequence</td> | <td>Coding sequence</td> | ||
- | <td> | + | <td>Finally not made</td> |
- | <td>Gene fecA of Escherichia coli, encoding an outer membrane ferric citrate sensor that | + | <td>Gene <i>fecA</i> of <i>Escherichia coli</i>, encoding an outer membrane ferric citrate sensor that |
initiates signal transduction via FecR and FecI to activate transcription.</td> | initiates signal transduction via FecR and FecI to activate transcription.</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>UPO-28</td> | <td>UPO-28</td> | ||
- | <td>BBa_K367012</td> | + | <td class="link"><a href="http://partsregistry.org/Part:BBa_K367012" target="_blank">BBa_K367012</a></td> |
- | <td>fecI & fecR</td> | + | <td><i>fecI</i> & <i>fecR</i></td> |
<td>Two overlapping coding sequences</td> | <td>Two overlapping coding sequences</td> | ||
- | <td> | + | <td>Finally not made</td> |
- | <td>fecI and fecR genes of Escherichia coli, encoding an ECF sigma factor and a membrane | + | <td><i>fecI</i> and <i>fecR</i> genes of <i>Escherichia coli</i>, encoding an ECF sigma factor and a membrane |
signal transduction protein respectively, involved in signal transduction of the ferric | signal transduction protein respectively, involved in signal transduction of the ferric | ||
citrate-dependent Fec system. They have been synthesized in the same Biobrick because | citrate-dependent Fec system. They have been synthesized in the same Biobrick because | ||
of their 4 bp overlap, not to reduce their expression. FecR protein interacts with the | of their 4 bp overlap, not to reduce their expression. FecR protein interacts with the | ||
- | outer membrane sensor FecA and activates the sigma factor FecI, which acts over | + | outer membrane sensor FecA and activates the sigma factor FecI, which acts over P<i>fecA</i> promoter region.</td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>UPO-12</td> | <td>UPO-12</td> | ||
- | <td>BBa_K367009</td> | + | <td class="link"><a href="http://partsregistry.org/Part:BBa_K367009" target="_blank">BBa_K367009</a></td> |
- | <td> | + | <td>P<i>fecA</i></td> |
<td>Promoter</td> | <td>Promoter</td> | ||
<td>Made by PCR</td> | <td>Made by PCR</td> | ||
- | <td>Escherichia coli | + | <td><i>Escherichia coli</i> P<i>fecA</i> promoter region, repressed by Fur under iron excess, and |
induced by ferric citrate through the FecA-FecR signal transduction pathway and | induced by ferric citrate through the FecA-FecR signal transduction pathway and | ||
the FecI ECF sigma factor.</td> | the FecI ECF sigma factor.</td> | ||
</tr> | </tr> | ||
+ | <tr> | ||
+ | <td>UPO-09</td> | ||
+ | <td class="link"><a href="http://partsregistry.org/Part:BBa_K367004" target="_blank">BBa_K367004</a></td> | ||
+ | <td><i>fecI</i></td> | ||
+ | <td>Coding sequence</td> | ||
+ | <td>Made by PCR</td> | ||
+ | <td>Gene <i>fecI</i> of <i>Escherichia coli</i>, encoding an ECF sigma factor | ||
+ | used to regulate transcription in response to the FecA-FecR | ||
+ | signal transduction pathway in response to ferric citrate</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>UPO-10</td> | ||
+ | <td class="link"><a href="http://partsregistry.org/Part:BBa_K367005" target="_blank">BBa_K367005</a></td> | ||
+ | <td><i>fecR</i></td> | ||
+ | <td>Coding sequence</td> | ||
+ | <td>Finally not made</td> | ||
+ | <td>Gene <i>fecR</i> from <i>Escherichia coli</i>, encoding a membrane protein involved | ||
+ | in signal transduction of the ferric citrate-dependent Fec system to | ||
+ | stimulate transcription via the ECF sigma factor FecI</td> | ||
+ | </tr> | ||
<tr> | <tr> | ||
<td class="headRow" rowspan="2">Glutamate Synthetase</td> | <td class="headRow" rowspan="2">Glutamate Synthetase</td> | ||
<td>UPO-17</td> | <td>UPO-17</td> | ||
- | <td>BBa_K367010</td> | + | <td class="link"><a href="http://partsregistry.org/Part:BBa_K367010" target="_blank">BBa_K367010</a></td> |
- | <td>gltD</td> | + | <td><i>gltD</i></td> |
<td>Coding sequence</td> | <td>Coding sequence</td> | ||
- | <td> | + | <td>Finally not made</td> |
- | <td>Escherichia coli gltD gene, encoding glutamate synthase beta subunit. Glutamate | + | <td><i>Escherichia coli</i> <i>gltD</i> gene, encoding glutamate synthase beta subunit. Glutamate |
synthetase converts glutamine + 2-oxoglutarate into glutamate. Glutamate is a | synthetase converts glutamine + 2-oxoglutarate into glutamate. Glutamate is a | ||
- | source of amine groups via transamination, and a chemoattractant for E. coli.</td> | + | source of amine groups via transamination, and a chemoattractant for <i>E. coli.</i></td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>UPO-18</td> | <td>UPO-18</td> | ||
- | <td>BBa_K367011</td> | + | <td class="link"><a href="http://partsregistry.org/Part:BBa_K367011" target="_blank">BBa_K367011</a></td> |
- | <td>gltB</td> | + | <td><i>gltB</i></td> |
<td>Coding sequence</td> | <td>Coding sequence</td> | ||
<td>Made by PCR</td> | <td>Made by PCR</td> | ||
- | <td>Escherichia coli gltB gene, encoding glutamate synthase alpha subunit. Glutamate | + | <td><i>Escherichia coli</i> <i>gltB</i> gene, encoding glutamate synthase alpha subunit. Glutamate |
synthetase converts glutamine + 2-oxoglutarate into glutamate. Glutamate is a | synthetase converts glutamine + 2-oxoglutarate into glutamate. Glutamate is a | ||
- | source of amine groups via transamination, and a chemoattractant for E. coli.</td> | + | source of amine groups via transamination, and a chemoattractant for <i>E. coli.</i></td> |
</tr> | </tr> | ||
</tbody> | </tbody> | ||
Line 231: | Line 248: | ||
<td class="headRow" rowspan="3">Expression</td> | <td class="headRow" rowspan="3">Expression</td> | ||
<td>UPO-01</td> | <td>UPO-01</td> | ||
- | <td>BBa_J23100</td> | + | <td class="link"><a href="http://partsregistry.org/Part:BBa_J23100" target="_blank">BBa_J23100</a></td> |
<td>Strong Promoter</td> | <td>Strong Promoter</td> | ||
<td>Promoter</td> | <td>Promoter</td> | ||
Line 238: | Line 255: | ||
<tr> | <tr> | ||
<td>UPO-02</td> | <td>UPO-02</td> | ||
- | <td>BBa_B0030</td> | + | <td class="link"><a href="http://partsregistry.org/Part:BBa_B0030" target="_blank">BBa_B0030</a></td> |
<td>RBS.1 (strong)</td> | <td>RBS.1 (strong)</td> | ||
<td>Shine-Dalgarno</td> | <td>Shine-Dalgarno</td> | ||
Line 246: | Line 263: | ||
<tr> | <tr> | ||
<td>UPO-03</td> | <td>UPO-03</td> | ||
- | <td>BBa_B0015</td> | + | <td class="link"><a href="http://partsregistry.org/Part:BBa_B0015" target="_blank">BBa_B0015</a></td> |
<td>rrnBT1-T7TE</td> | <td>rrnBT1-T7TE</td> | ||
<td>Terminator (double)</td> | <td>Terminator (double)</td> | ||
Line 256: | Line 273: | ||
<td class="headRow" rowspan="2">Reporters</td> | <td class="headRow" rowspan="2">Reporters</td> | ||
<td>UPO-13</td> | <td>UPO-13</td> | ||
- | <td>BBa_E0040</td> | + | <td class="link"><a href="http://partsregistry.org/Part:BBa_E0040" target="_blank">BBa_E0040</a></td> |
<td>GFP</td> | <td>GFP</td> | ||
<td>Coding sequence</td> | <td>Coding sequence</td> | ||
<td>2010P1; 14K</td> | <td>2010P1; 14K</td> | ||
- | <td>Green fluorescent protein derived from jellyfish Aequeora victoria wild-type. | + | <td>Green fluorescent protein derived from jellyfish <i>Aequeora victoria</i> wild-type. |
It is used to report the expression behind some promoters.</td> | It is used to report the expression behind some promoters.</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>UPO-20</td> | <td>UPO-20</td> | ||
- | <td>BBa_I13522</td> | + | <td class="link"><a href="http://partsregistry.org/Part:BBa_I13522" target="_blank">BBa_I13522</a></td> |
<td>Ptet-SD-GFP-TT-TT</td> | <td>Ptet-SD-GFP-TT-TT</td> | ||
<td>Composite (constitutive protein generator)</td> | <td>Composite (constitutive protein generator)</td> | ||
Line 275: | Line 292: | ||
<td class="headRow" rowspan="2">Chemoattractants Synthesis</td> | <td class="headRow" rowspan="2">Chemoattractants Synthesis</td> | ||
<td>UPO-16</td> | <td>UPO-16</td> | ||
- | <td>BBa_C0083</td> | + | <td class="link"><a href="http://partsregistry.org/Part:BBa_C0083" target="_blank">BBa_C0083</a></td> |
- | <td>aspA</td> | + | <td><i>aspA</i></td> |
<td>Coding sequence</td> | <td>Coding sequence</td> | ||
<td>2010P2; 17A</td> | <td>2010P2; 17A</td> | ||
<td>Coding secuence for Aspartate ammonia-lyase enzyme. AspA aminates fumarate to make | <td>Coding secuence for Aspartate ammonia-lyase enzyme. AspA aminates fumarate to make | ||
- | aspartate. Aspartate can be used as a bacterial chemotaxis signal for Escherichia coli.</td> | + | aspartate. Aspartate can be used as a bacterial chemotaxis signal for <i>Escherichia coli.</i></td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>UPO-19</td> | <td>UPO-19</td> | ||
- | <td>BBa_J45319</td> | + | <td class="link"><a href="http://partsregistry.org/Part:BBa_J45319" target="_blank">BBa_J45319</a></td> |
<td>SD-pchBA-TT-TT</td> | <td>SD-pchBA-TT-TT</td> | ||
<td>Composite (protein generator)</td> | <td>Composite (protein generator)</td> | ||
Line 291: | Line 308: | ||
(PoPS) and produces as output the PchA and PchB enzymes that catalyze | (PoPS) and produces as output the PchA and PchB enzymes that catalyze | ||
production of salicylate from the cellular metabolite chorismate. Salicylate | production of salicylate from the cellular metabolite chorismate. Salicylate | ||
- | can be used as a bacterial chemotaxis signal for Pseudomonas putidas.</td> | + | can be used as a bacterial chemotaxis signal for <i>Pseudomonas putidas.</i></td> |
</tr> | </tr> | ||
</tbody> | </tbody> | ||
</table> | </table> | ||
</div> | </div> | ||
+ | <div class="table"> | ||
+ | <table class="tableBio" cellspacing="0" cellpadding="0"> | ||
+ | <caption>Vectors</caption> | ||
+ | <thead> | ||
+ | <tr> | ||
+ | <th> </th> | ||
+ | <th>Part Number</th> | ||
+ | <th>iGEM ID</th> | ||
+ | <th>Type</th> | ||
+ | <th>Origin</th> | ||
+ | </tr> | ||
+ | </thead> | ||
+ | <tbody> | ||
+ | <tr> | ||
+ | <td class="headRow" rowspan="7">High Copy Vectors</td> | ||
+ | <td>UPO-24</td> | ||
+ | <td class="link"><a href="http://partsregistry.org/Part:pSB1AK3" target="_blank">pSB1AK3</a></td> | ||
+ | <td>Plasmid</td> | ||
+ | <td>2010P1; 11A</td> | ||
+ | <tr> | ||
+ | <td>UPO-25</td> | ||
+ | <td class="link"><a href="http://partsregistry.org/Part:pSB1AT3" target="_blank">pSB1AT3</a></td> | ||
+ | <td>Plasmid</td> | ||
+ | <td>2010P1; 13A</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>UPO-26</td> | ||
+ | <td class="link"><a href="http://partsregistry.org/Part:pSB1AC3" target="_blank">pSB1AC3</a></td> | ||
+ | <td>Plasmid</td> | ||
+ | <td>2010P1; 9A</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>UPO-32</td> | ||
+ | <td class="link"><a href="http://partsregistry.org/Part:pSB1K3" target="_blank">pSB1K3</a></td> | ||
+ | <td>Plasmid</td> | ||
+ | <td>2010P1; 5A</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>UPO-33</td> | ||
+ | <td class="link"><a href="http://partsregistry.org/Part:pSB1T3" target="_blank">pSB1T3</a></td> | ||
+ | <td>Plasmid</td> | ||
+ | <td>2010P1; 7A</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>UPO-34</td> | ||
+ | <td class="link"><a href="http://partsregistry.org/Part:pSB1C3" target="_blank">pSB1C3</a></td> | ||
+ | <td>Plasmid</td> | ||
+ | <td>2010P1; 3A</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>UPO-35</td> | ||
+ | <td class="link"><a href="http://partsregistry.org/Part:pSB1A3" target="_blank">pSB1A3</a></td> | ||
+ | <td>Plasmid</td> | ||
+ | <td>2010P1; 1C</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td class="headRow" rowspan="5">Low Copy Vectors</td> | ||
+ | <td>UPO-36</td> | ||
+ | <td class="link"><a href="http://partsregistry.org/Part:pSB3T5" target="_blank">pSB3T5</a></td> | ||
+ | <td>Plasmid</td> | ||
+ | <td>2010P1; 7C</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>UPO-37</td> | ||
+ | <td class="link"><a href="http://partsregistry.org/Part:pSB3C5" target="_blank">pSB3C5</a></td> | ||
+ | <td>Plasmid</td> | ||
+ | <td>2010P1; 3C</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>UPO-38</td> | ||
+ | <td class="link"><a href="http://partsregistry.org/Part:pSB4K5" target="_blank">pSB4K5</a></td> | ||
+ | <td>Plasmid</td> | ||
+ | <td>2010P1; 5G</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>UPO-39</td> | ||
+ | <td class="link"><a href="http://partsregistry.org/Part:pSB4C5" target="_blank">pSB4C5</a></td> | ||
+ | <td>Plasmid</td> | ||
+ | <td>2010P1; 3E</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>UPO-40</td> | ||
+ | <td class="link"><a href="http://partsregistry.org/Part:pSB4A5" target="_blank">pSB4A5</a></td> | ||
+ | <td>Plasmid</td> | ||
+ | <td>2010P1; 1G</td> | ||
+ | </tr> | ||
+ | </tbody> | ||
+ | </table> | ||
+ | </div> | ||
+ | |||
+ | <a class="return_button" href="/Team:UPO-Sevilla/Biobricks" title="Biobricks"><span>Return to Biobricks</span></a> | ||
+ | |||
+ | <div class="clear"></div> | ||
</div> | </div> |
Latest revision as of 23:25, 25 October 2010
Parts
In this site you can find all the parts iGEM team UPO-Sevilla had been working on.
BioBricks names give you information about the kind of BioBrick and it is a good way to work with a big quantity of parts (see more). But it is hard to write these long names in a microcentrifuge tube! That is why we used a second numerical name for each part. Numerical names are easier to work with in the lab and also to organize the work. You will see this code next to standard names. This will help you to understand other issues of Bacterial Crowding project, like Circuits and Devices.
Part Number | iGEM ID | Identity | Type | Origin | Description | |
---|---|---|---|---|---|---|
Prh System | UPO-04 | BBa_K367000 | prhA | Coding sequence | Synthesis | Ralstonia solanacearum gene prhA, encoding an outer membrane protein that senses a signal on plant cell walls and transduces it through the bacterial cell envelop to stimulate transcription from several operons. Optimized sequence to be expressed in Escherichia coli. |
UPO-05 | BBa_K367001 | prhR | Coding sequence | Synthesis | Ralstonia solanacearum gene prhR, encoding a membrane signal transduction protein involved in the Prh pathway. The nondiffusible plant cell wall signal is transduced by the N-terminal extension of PrhA to the C-terminal part of the transmembrane protein PrhR and then through PrhR across the cytoplasmic membrane. Optimized sequence to be expressed in Escherichia coli. | |
UPO-06 | BBa_K367002 | prhI | Coding sequence | Synthesis | Ralstonia solanacearum gene prhI, encoding an ECF sigma factor responsible for transcription dependent on the Prh signal transduction system. PrhI is activated by PrhR and then the sigma factor induces the expression by activating PprhJ promoter. Optimized sequence to be expressed in Escherichia coli. | |
UPO-11 | BBa_K367008 | PprhJ | Promoter | Synthesis | The PprhJ promoter region, responsive to plant cell contact via signal transduction by PrhA and PrhR and activation by ECF sigma factor PrhI. Optimized sequence to be expressed in Escherichia coli. | |
Hybrid Protein | UPO-07 | BBa_K367006 | fecA-prhA | Coding sequence | Synthesis | Artificial coding sequence spanning the first 92 codons of fecA, encoding the signal peptide (aa. 1-33), the proposed Ton-box (aa. 54-63), fused to the distal end of the prhA coding sequence at the conserved GSGL motif (aa. 89-92). This hybrid protein allows to sense nondifusible signals and to transduce it by the well known Fec pathway. Optimized sequence to be expressed in Escherichia coli. |
Fec System | UPO-08 | BBa_K367003 | fecA | Coding sequence | Finally not made | Gene fecA of Escherichia coli, encoding an outer membrane ferric citrate sensor that initiates signal transduction via FecR and FecI to activate transcription. |
UPO-28 | BBa_K367012 | fecI & fecR | Two overlapping coding sequences | Finally not made | fecI and fecR genes of Escherichia coli, encoding an ECF sigma factor and a membrane signal transduction protein respectively, involved in signal transduction of the ferric citrate-dependent Fec system. They have been synthesized in the same Biobrick because of their 4 bp overlap, not to reduce their expression. FecR protein interacts with the outer membrane sensor FecA and activates the sigma factor FecI, which acts over PfecA promoter region. | |
UPO-12 | BBa_K367009 | PfecA | Promoter | Made by PCR | Escherichia coli PfecA promoter region, repressed by Fur under iron excess, and induced by ferric citrate through the FecA-FecR signal transduction pathway and the FecI ECF sigma factor. | |
UPO-09 | BBa_K367004 | fecI | Coding sequence | Made by PCR | Gene fecI of Escherichia coli, encoding an ECF sigma factor used to regulate transcription in response to the FecA-FecR signal transduction pathway in response to ferric citrate | |
UPO-10 | BBa_K367005 | fecR | Coding sequence | Finally not made | Gene fecR from Escherichia coli, encoding a membrane protein involved in signal transduction of the ferric citrate-dependent Fec system to stimulate transcription via the ECF sigma factor FecI | |
Glutamate Synthetase | UPO-17 | BBa_K367010 | gltD | Coding sequence | Finally not made | Escherichia coli gltD gene, encoding glutamate synthase beta subunit. Glutamate synthetase converts glutamine + 2-oxoglutarate into glutamate. Glutamate is a source of amine groups via transamination, and a chemoattractant for E. coli. |
UPO-18 | BBa_K367011 | gltB | Coding sequence | Made by PCR | Escherichia coli gltB gene, encoding glutamate synthase alpha subunit. Glutamate synthetase converts glutamine + 2-oxoglutarate into glutamate. Glutamate is a source of amine groups via transamination, and a chemoattractant for E. coli. |
Part Number | iGEM ID | Identity | Type | Origin | Description | |
---|---|---|---|---|---|---|
Expression | UPO-01 | BBa_J23100 | Strong Promoter | Promoter | Self-annealing primers | Constitutive strong promoter. We ordered it like a primer to make our work easier. |
UPO-02 | BBa_B0030 | RBS.1 (strong) | Shine-Dalgarno | Self-annealing primers | Strong RBS based on Ron Weiss thesis. | |
UPO-03 | BBa_B0015 | rrnBT1-T7TE | Terminator (double) | 2010P1; 23L | A reliable double transcription terminator. | |
Reporters | UPO-13 | BBa_E0040 | GFP | Coding sequence | 2010P1; 14K | Green fluorescent protein derived from jellyfish Aequeora victoria wild-type. It is used to report the expression behind some promoters. |
UPO-20 | BBa_I13522 | Ptet-SD-GFP-TT-TT | Composite (constitutive protein generator) | 2010P2; 8A | Constitutive GFP generator. It allows to see bacteria easier and also quantificating their amount. | |
Chemoattractants Synthesis | UPO-16 | BBa_C0083 | aspA | Coding sequence | 2010P2; 17A | Coding secuence for Aspartate ammonia-lyase enzyme. AspA aminates fumarate to make aspartate. Aspartate can be used as a bacterial chemotaxis signal for Escherichia coli. |
UPO-19 | BBa_J45319 | SD-pchBA-TT-TT | Composite (protein generator) | 2010P2;15I | PchA & PchB enzyme generator takes as input a transcriptional signal (PoPS) and produces as output the PchA and PchB enzymes that catalyze production of salicylate from the cellular metabolite chorismate. Salicylate can be used as a bacterial chemotaxis signal for Pseudomonas putidas. |
Part Number | iGEM ID | Type | Origin | |
---|---|---|---|---|
High Copy Vectors | UPO-24 | pSB1AK3 | Plasmid | 2010P1; 11A |
UPO-25 | pSB1AT3 | Plasmid | 2010P1; 13A | |
UPO-26 | pSB1AC3 | Plasmid | 2010P1; 9A | |
UPO-32 | pSB1K3 | Plasmid | 2010P1; 5A | |
UPO-33 | pSB1T3 | Plasmid | 2010P1; 7A | |
UPO-34 | pSB1C3 | Plasmid | 2010P1; 3A | |
UPO-35 | pSB1A3 | Plasmid | 2010P1; 1C | |
Low Copy Vectors | UPO-36 | pSB3T5 | Plasmid | 2010P1; 7C |
UPO-37 | pSB3C5 | Plasmid | 2010P1; 3C | |
UPO-38 | pSB4K5 | Plasmid | 2010P1; 5G | |
UPO-39 | pSB4C5 | Plasmid | 2010P1; 3E | |
UPO-40 | pSB4A5 | Plasmid | 2010P1; 1G |