Team:Heidelberg/Project

From 2010.igem.org

(Difference between revisions)
(Prototype team page)
 
(10 intermediate revisions not shown)
Line 1: Line 1:
-
<!-- *** What falls between these lines is the Alert Box!  You can remove it from your pages once you have read and understood the alert *** -->
+
{{:Team:Heidelberg/Single}}
 +
<html>
 +
<style type="text/css">
 +
a { outline:0}
 +
#wrapperheadline {
 +
position:relative;
 +
font-size:1.6em;
 +
font-weight:bold;
 +
}
 +
 +
</style>
 +
</html>
 +
{{:Team:Heidelberg/Single_Pagetop|project}}
 +
{{:Team:Heidelberg/Side_Top}}
<html>
<html>
-
<div id="box" style="width: 700px; margin-left: 137px; padding: 5px; border: 3px solid #000; background-color: #fe2b33;">
+
<div style="font-weight:bold">The circle of gene regulation</div>
-
<div id="template" style="text-align: center; font-weight: bold; font-size: large; color: #f6f6f6; padding: 5px;">
+
<p>In living systems, gene expression is regulated by the interaction of miRNAs with the endogenous transcripts. The iGEM Team Heidelberg 2010 developed an fine-tuning regulatory mechanism of gene expression by miTuner, an auxiliary system employing both endogenous and exogenous miRNAs. Gene delivery by AAVs furthermore supports and enhances the efficiency of the fine-tuning regulation. </p>
-
This is a template page. READ THESE INSTRUCTIONS.
+
<img src="https://static.igem.org/mediawiki/2010/2/26/RegCircle.png"/>
-
</div>
+
-
<div id="instructions" style="text-align: center; font-weight: normal; font-size: small; color: #f6f6f6; padding: 5px;">
+
-
You are provided with this team page template with which to start the iGEM season. You may choose to personalize it to fit your team but keep the same "look." Or you may choose to take your team wiki to a different level and design your own wiki. You can find some examples <a href="https://2008.igem.org/Help:Template/Examples">HERE</a>.
+
-
</div>
+
-
<div id="warning" style="text-align: center; font-weight: bold; font-size: small; color: #f6f6f6; padding: 5px;">
+
-
You <strong>MUST</strong> have a team description page, a project abstract, a complete project description, a lab notebook, and a safety page. PLEASE keep all of your pages within your teams namespace. 
+
-
</div>
+
-
</div>
+
</html>
</html>
 +
{{:Team:Heidelberg/Side_Bottom}}
 +
<html>
 +
<div class="t1">Abstract</div><br>
-
<!-- *** End of the alert box *** -->
+
<div class="t3">miBricks: DNA is not enough</div>
-
 
+
-
{|align="justify"
+
-
|You can write a background of your team here.  Give us a background of your team, the members, etc.  Or tell us more about something of your choosing.
+
-
|[[Image:Heidelberg_logo.png|200px|right|frame]]
+
-
|-
+
-
|
+
-
''Tell us more about your project.  Give us background.  Use this is the abstract of your project.  Be descriptive but concise (1-2 paragraphs)''
+
-
|[[Image:Heidelberg_team.png|right|frame|Your team picture]]
+
-
|-
+
-
|
+
-
|align="center"|[[Team:Heidelberg | Team Example]]
+
-
|}
+
-
 
+
-
<!--- The Mission, Experiments --->
+
-
 
+
-
{| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center"
+
-
!align="center"|[[Team:Heidelberg|Home]]
+
-
!align="center"|[[Team:Heidelberg/Team|Team]]
+
-
!align="center"|[https://igem.org/Team.cgi?year=2010&team_name=Heidelberg Official Team Profile]
+
-
!align="center"|[[Team:Heidelberg/Project|Project]]
+
-
!align="center"|[[Team:Heidelberg/Parts|Parts Submitted to the Registry]]
+
-
!align="center"|[[Team:Heidelberg/Modeling|Modeling]]
+
-
!align="center"|[[Team:Heidelberg/Notebook|Notebook]]
+
-
!align="center"|[[Team:Heidelberg/Safety|Safety]]
+
-
|}
+
-
 
+
-
 
+
-
 
+
-
 
+
-
== '''Overall project''' ==
+
-
 
+
-
Your abstract
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
== Project Details==
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
=== Part 2 ===
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
=== The Experiments ===
+
-
 
+
-
 
+
-
 
+
-
 
+
-
=== Part 3 ===
+
-
 
+
 +
<div id="projectabstract">The iGEM Team Heidelberg 2010 unlocks the entirely new field of synthetic mi(cro)RNA technologies for mammalian cells and tissue engineering. By combining novel miRNA-based tools and protocols with cell-specific viral delivery systems our technology allows - for the first time - to use RNAi for rationally engineering gene regulation in targeted cells and organs. The two most prominent technologies we developed are a new measurement standard for real-time detection/quantification of miRNA binding site strength in living cells (miMeasure) as well as a synthetic miRNA expression kit (miTuner) that allows to precisely repress (fully or partly) and thus fine-regulate any desired target gene. The rational design of this miRNA expression kit is accomplished by a novel computational model for miRNA-based gene silencing termed miBEAT. The miRNA technology is accompanied by a novel gene delivery technology based on re-designed Adeno-associated viruses (AAV) that were molecularly engineered and evolved to specifically deliver our miRNA expression kit to hepatocytes. The rationally designed synthetic miRNA expression kits were successfully validated in cultured, transformed or primary liver cells and then transferred into an adult mouse model. We thereby demonstrate that our miRNA expression kit is able to specifically fine tune the expression level of target genes both in cell culture (<i>in vitro</i>) and importantly also in the liver of mice (<i>in vivo</i>). In summary, we show that this technology allows the precise, predictable and quantitative adjustment of mammalian gene expression levels. Our work fosters the introduction of synthetic biology based technologies into the rapidly emerging field of personalized biomedicine.</div><br>
 +
<div class="t3">Graphical abstract</div><br>
 +
<div style="align:center"><img src="https://static.igem.org/mediawiki/2010/2/29/GraphAbstract.png"/></div>
 +
</html>
-
== Results ==
+
{{:Team:Heidelberg/Single_Bottom}}

Latest revision as of 03:50, 28 October 2010

The circle of gene regulation

In living systems, gene expression is regulated by the interaction of miRNAs with the endogenous transcripts. The iGEM Team Heidelberg 2010 developed an fine-tuning regulatory mechanism of gene expression by miTuner, an auxiliary system employing both endogenous and exogenous miRNAs. Gene delivery by AAVs furthermore supports and enhances the efficiency of the fine-tuning regulation.

 
Abstract

miBricks: DNA is not enough
The iGEM Team Heidelberg 2010 unlocks the entirely new field of synthetic mi(cro)RNA technologies for mammalian cells and tissue engineering. By combining novel miRNA-based tools and protocols with cell-specific viral delivery systems our technology allows - for the first time - to use RNAi for rationally engineering gene regulation in targeted cells and organs. The two most prominent technologies we developed are a new measurement standard for real-time detection/quantification of miRNA binding site strength in living cells (miMeasure) as well as a synthetic miRNA expression kit (miTuner) that allows to precisely repress (fully or partly) and thus fine-regulate any desired target gene. The rational design of this miRNA expression kit is accomplished by a novel computational model for miRNA-based gene silencing termed miBEAT. The miRNA technology is accompanied by a novel gene delivery technology based on re-designed Adeno-associated viruses (AAV) that were molecularly engineered and evolved to specifically deliver our miRNA expression kit to hepatocytes. The rationally designed synthetic miRNA expression kits were successfully validated in cultured, transformed or primary liver cells and then transferred into an adult mouse model. We thereby demonstrate that our miRNA expression kit is able to specifically fine tune the expression level of target genes both in cell culture (in vitro) and importantly also in the liver of mice (in vivo). In summary, we show that this technology allows the precise, predictable and quantitative adjustment of mammalian gene expression levels. Our work fosters the introduction of synthetic biology based technologies into the rapidly emerging field of personalized biomedicine.

Graphical abstract