Team:Alberta/project
From 2010.igem.org
(→GENOMIKON ONLINE) |
|||
(82 intermediate revisions not shown) | |||
Line 1: | Line 1: | ||
- | + | {{Team:Alberta/Head}} | |
- | + | {{Team:Alberta/navbar|project=selected}} | |
- | + | {{Team:Alberta/beginLeftSideBar}} | |
+ | {{Team:Alberta/endLeftSideBar}} | ||
- | / | + | {{Team:Alberta/beginRightSideBar}} |
- | . | + | [[Image:Alberta Plate highschool.jpg|center|frame|Bryce Stewart, a grade 10 student shows off colonies transformed with a plasmid constructed using the GENOMIKON kit.]] |
+ | {{Team:Alberta/endRightSideBar}} | ||
- | / | + | {{Team:Alberta/beginMainContent}} |
- | + | ==Project Overview== | |
- | + | <div id="horiz-line"></div> | |
- | + | ''GENOMIKON: an Educational Toolkit for Rapid Genetic Construction'' | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | Synthetic biology and gene manipulation have potential applications in many fields. Unfortunately, courses in this field are only taught to university students who have already chosen to specialize in genetics. Recognizing that many of the basic principles and methods are easily explained, the University of Alberta sought to make synthetic biology more accessible by creating GENOMIKON, a gene manipulation and synthetic biology kit designed to work in a high school environment. To construct the kit, we first created the BioBytes 2.0 assembly method so that the DNA in the kit could be ligated into plasmids quickly and efficiently. We then designed experiments for the kit with the aim of making them quick, reliable, and easy to perform even with minimal lab equipment. To make GENOMIKON useful as a classroom resource, an interactive lab manual was created to guide students through their experiments. We also developed a distribution plan for getting the kit into high schools across Canada. GENOMIKON's aim is to be a fun way of giving students an introduction to genetics and molecular biology, even before they enter post-secondary education. From our experience over the past six months, we believe it will be a success. | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ==[[Team:Alberta/biobyte2 |BioBytes Theory]]== | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | The DNA components of the GENOMIKON kit will be provided in linear pieces called BioBytes. These Bytes have 5' overhangs, four bases long on both ends, which gives specificity to the Bytes that can neighbor them. BioBytes come in two formats: 'AB Bytes' and 'BA Bytes'. AB Bytes can only be ligated to BA Bytes and vice versa. This leads to a construct alternating in AB and BA Bytes. The bytes are bound to an anchor which specifies the order of alternation between AB and BA bytes. | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ==[[Team:Alberta/Kit |The GENOMIKON Kit]]== | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | / | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | The GENOMIKON kit was designed for use in a high school environment, however most high schools lack the lab equipment traditionally used to perform genetic experiments. Fortunately, the BioBytes 2.0 assembly method does not require centrifuges, thermocyclers or extreme accuracy with regards to volume and temperature. The only equipment a high school must supply is a hot plate and a beaker. Creating a sterile environment in a high school lab was another challenge that had to be addressed. The reagents in the kit are sent in individual sterilized packages along with everything that a high school would need to perform the transformations using synthetic parts. | |
- | + | ||
- | + | ||
- | + | ||
- | + | ==[[Team:Alberta/Software |GENOMIKON ONLINE]]== | |
- | + | ||
- | + | ||
- | + | ||
- | + | GENOMIKON.ca was created as a lab manual to accompany the GENOMIKON kit. It was designed to act as a teaching resource to give students background information for the experiments they design and to introduce them to the kit and its uses. Features include BioByte descriptions, an interactive plasmid construction tool where students can engineer their own plasmids by dragging and dropping different parts into sequence, a glossary and encyclopedia. Lastly, the teacher can coordinate the class experiments by working through the groups feature. | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | + | {{Team:Alberta/endMainContent}} | |
- | { | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | { | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | } | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | } | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Latest revision as of 03:57, 28 October 2010
Project Overview
GENOMIKON: an Educational Toolkit for Rapid Genetic Construction
Synthetic biology and gene manipulation have potential applications in many fields. Unfortunately, courses in this field are only taught to university students who have already chosen to specialize in genetics. Recognizing that many of the basic principles and methods are easily explained, the University of Alberta sought to make synthetic biology more accessible by creating GENOMIKON, a gene manipulation and synthetic biology kit designed to work in a high school environment. To construct the kit, we first created the BioBytes 2.0 assembly method so that the DNA in the kit could be ligated into plasmids quickly and efficiently. We then designed experiments for the kit with the aim of making them quick, reliable, and easy to perform even with minimal lab equipment. To make GENOMIKON useful as a classroom resource, an interactive lab manual was created to guide students through their experiments. We also developed a distribution plan for getting the kit into high schools across Canada. GENOMIKON's aim is to be a fun way of giving students an introduction to genetics and molecular biology, even before they enter post-secondary education. From our experience over the past six months, we believe it will be a success.
BioBytes Theory
The DNA components of the GENOMIKON kit will be provided in linear pieces called BioBytes. These Bytes have 5' overhangs, four bases long on both ends, which gives specificity to the Bytes that can neighbor them. BioBytes come in two formats: 'AB Bytes' and 'BA Bytes'. AB Bytes can only be ligated to BA Bytes and vice versa. This leads to a construct alternating in AB and BA Bytes. The bytes are bound to an anchor which specifies the order of alternation between AB and BA bytes.
The GENOMIKON Kit
The GENOMIKON kit was designed for use in a high school environment, however most high schools lack the lab equipment traditionally used to perform genetic experiments. Fortunately, the BioBytes 2.0 assembly method does not require centrifuges, thermocyclers or extreme accuracy with regards to volume and temperature. The only equipment a high school must supply is a hot plate and a beaker. Creating a sterile environment in a high school lab was another challenge that had to be addressed. The reagents in the kit are sent in individual sterilized packages along with everything that a high school would need to perform the transformations using synthetic parts.
GENOMIKON ONLINE
GENOMIKON.ca was created as a lab manual to accompany the GENOMIKON kit. It was designed to act as a teaching resource to give students background information for the experiments they design and to introduce them to the kit and its uses. Features include BioByte descriptions, an interactive plasmid construction tool where students can engineer their own plasmids by dragging and dropping different parts into sequence, a glossary and encyclopedia. Lastly, the teacher can coordinate the class experiments by working through the groups feature.