Team:Washington
From 2010.igem.org
Line 40: | Line 40: | ||
the immune system. In our second project, we re-engineered and transplanted | the immune system. In our second project, we re-engineered and transplanted | ||
a protein secretion system capable of combating Gram-negative bacteria into | a protein secretion system capable of combating Gram-negative bacteria into | ||
- | E. coli. This system was designed to target Gram-negative pathogens in a | + | ''E. coli''. This system was designed to target Gram-negative pathogens in a |
modular and controllable fashion. These two systems are the vanguard of a | modular and controllable fashion. These two systems are the vanguard of a | ||
new era of antibiotics using the power of nature harnessed with the tools of | new era of antibiotics using the power of nature harnessed with the tools of |
Revision as of 18:08, 27 October 2010
While vital to our quality of life, traditional antibiotics face the serious
problems of widespread bacterial resistance and destruction of natural gut
flora - problems which call for improved twenty-first century antibiotics.
Using synthetic biology tools, we designed, built, and tested two new
systems to fight infections by both broad types of bacteria - Gram-positive
and Gram-negative. Our first project targets Bacillus anthracis, the
Gram-positive pathogen that causes anthrax. We re-engineered an enzyme to
remove the pathogen's protective coating, rendering it defenseless against
the immune system. In our second project, we re-engineered and transplanted
a protein secretion system capable of combating Gram-negative bacteria into
E. coli. This system was designed to target Gram-negative pathogens in a
modular and controllable fashion. These two systems are the vanguard of a
new era of antibiotics using the power of nature harnessed with the tools of
synthetic biology.