Team:UPO-Sevilla/Modeling
From 2010.igem.org
(Difference between revisions)
(23 intermediate revisions not shown) | |||
Line 9: | Line 9: | ||
</script> | </script> | ||
</html> | </html> | ||
- | |||
- | |||
- | |||
<html> | <html> | ||
+ | <div class=contentBC> | ||
<h1>Models</h1> | <h1>Models</h1> | ||
- | |||
The members of the dry lab are simulating the different components of the full system. Three main components can be identified: | The members of the dry lab are simulating the different components of the full system. Three main components can be identified: | ||
Line 23: | Line 20: | ||
<li>The difussion of the chemoattractant through the medium. </li> | <li>The difussion of the chemoattractant through the medium. </li> | ||
<li>The motion of the bacterias through the medium due to the gradient on the chemoattractant concentration.</li> | <li>The motion of the bacterias through the medium due to the gradient on the chemoattractant concentration.</li> | ||
- | <li>The chemoattractant generation within the bacteria. </li> | + | <li>The circuits and devices for the chemoattractant generation within the bacteria. </li> |
</ol> | </ol> | ||
+ | <p>For the first two points, we have developed a simulation using Java. The explanation of the simulation can be found in the Chemotaxis link below. Moreover, you can <b>download the bacterial crowding simulation</b> <a href="https://static.igem.org/mediawiki/2010/3/3f/BacterialCrowdingSimulation.zip">here</a> | ||
+ | </p> | ||
+ | <p> | ||
+ | The circuits and transduction signals inside the cell is simulated by using Matlab's Simbiology Toolbox. The model and results can be found in the Signaling link below. | ||
+ | </p> | ||
- | < | + | <div class="center"> |
+ | <a href="https://2010.igem.org/Team:UPO-Sevilla/Modeling/Chemotaxis"> <img class="subBanner" src="https://static.igem.org/mediawiki/2010/2/24/BacterialCrowdingChemotaxis.png" alt="Chemotaxis" /></a> | ||
+ | <a href="https://2010.igem.org/Team:UPO-Sevilla/Modeling/Signaling"><img class="subBanner" src="https://static.igem.org/mediawiki/2010/5/59/BacterialCrowdingSignaling.png" alt="Signaling" /></a> | ||
+ | </div> | ||
- | |||
+ | </div> | ||
+ | </html> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
{{:Team:UPO-Sevilla/footer}} | {{:Team:UPO-Sevilla/footer}} | ||
</div> | </div> |
Latest revision as of 20:09, 26 October 2010
Models
The members of the dry lab are simulating the different components of the full system. Three main components can be identified:- The difussion of the chemoattractant through the medium.
- The motion of the bacterias through the medium due to the gradient on the chemoattractant concentration.
- The circuits and devices for the chemoattractant generation within the bacteria.
For the first two points, we have developed a simulation using Java. The explanation of the simulation can be found in the Chemotaxis link below. Moreover, you can download the bacterial crowding simulation here
The circuits and transduction signals inside the cell is simulated by using Matlab's Simbiology Toolbox. The model and results can be found in the Signaling link below.