Team:Caltech/BBa K338003

From 2010.igem.org

(Difference between revisions)
 
(One intermediate revision not shown)
Line 14: Line 14:
Note that these three genes should only cause the production of PHB ''oligomers'' in cells, not hardened plastic. A crosslinking agent is required to link the oligomers and form the final plastic product. Over-expression of the ''phaC1'' gene could cause some crosslinking, but this has not been experimentally verified.
Note that these three genes should only cause the production of PHB ''oligomers'' in cells, not hardened plastic. A crosslinking agent is required to link the oligomers and form the final plastic product. Over-expression of the ''phaC1'' gene could cause some crosslinking, but this has not been experimentally verified.
-
====BioBrick Characterization====
+
====Literature====
-
 
+
-
=====Effect of Heat Shock Temperature=====
+
-
 
+
-
 
+
-
=====Effect of Heat Shock Duration=====
+
 +
Lee describes how a similar gene construct (pSYL105) was used to produce very large amounts of PHB, up to 80-90% of the dry cell weight, under certain conditions. Synthesis of PHB is related to the amount of acetyl-CoA available - synthesis was bolstered in the presence of complex nitrogen sources, amino acids, or oleic acid. He also mentions that PHB production was highly dependent on the particular bacterial strain used. [10]
 
 
}}
}}

Latest revision as of 10:56, 26 October 2010


iGEM 2010



Home

People

Project Details

Protocols

Completed Systems

Notebook

Biosafety

Human Impact

References

Support


Caltech logo watermark.png

<partinfo>BBa_K338003 short</partinfo>

This is half of a planned part which would contain all three PHA synthase genes required to produce [http://en.wikipedia.org/wiki/Polyhydroxybutyrate polyhydroxybutyrate] (PHB) in cells: phaA, phaB1, phaC1. This half contains only phaA: <partinfo>BBa_K156012</partinfo>. It was designed to be ligated upstream of part BBa_K338004.

Usage and Biology

Design

When ligated upstream of BBa_K338004, the completed construct was designed to express all three PHA synthase genes required to make PHB oligomers from soybean oil. The three genes would be transcribed polycistronically on a single mRNA transcript under the IPTG-inducible control of the <partinfo>BBa_K215000</partinfo> promoter. Naturally, each gene is preceded by a standard RBS (<partinfo>B0034</partinfo>) and the transcript finishes with a strong terminator (<partinfo>B0015</partinfo>), for a total size of about 3500bp.

Note that these three genes should only cause the production of PHB oligomers in cells, not hardened plastic. A crosslinking agent is required to link the oligomers and form the final plastic product. Over-expression of the phaC1 gene could cause some crosslinking, but this has not been experimentally verified.

Literature

Lee describes how a similar gene construct (pSYL105) was used to produce very large amounts of PHB, up to 80-90% of the dry cell weight, under certain conditions. Synthesis of PHB is related to the amount of acetyl-CoA available - synthesis was bolstered in the presence of complex nitrogen sources, amino acids, or oleic acid. He also mentions that PHB production was highly dependent on the particular bacterial strain used. [10]

 
Error creating thumbnail: /websites/2010.igem.org/wiki/bin/ulimit4.sh: line 4: convert: command not found
Caltech footer.png


Locations of visitors to this page