Team:SDU-Denmark/project-t
From 2010.igem.org
(Difference between revisions)
(→Phototaxis) |
(→Phototaxis) |
||
Line 22: | Line 22: | ||
Our focus is to get this working in E.Coli, which craves a few extra steps. First we will have to link the SopII and HtrII domains together with a 9 amino acid residue linker, so that the signal transducing happens succesfully in coli. We also have to fuse HtrII and Tsr in their cytoplasmic domains, which is the HAMP domain, that both proteins contain. Fusion in this HAMP domain effectively couples the phototaxic receptors to the chemotaxis pathway, so that a phototactic effect is possible in E.Coli. These construction informations were obtained from the article: ''An Archaeal Photosignal-Transducing Module Mediates Phototaxis in Escherichia coli'' by Spudich et Al. [http://jb.asm.org/cgi/content/full/183/21/6365] That this system is functional in vitro in E.Coli has also been shown by Spudich et Al in the article ''Photostimulation of a Sensory Rhodopsin II/HtrII/Tsr Fusion Chimera Activates CheA-Autophosphorylation and CheY-Phosphotransfer in Vitro† '' [http://www.ncbi.nlm.nih.gov/pubmed/14636056]. We will only have to add retinal to the system, which is needed for proper function of the fusion,chimera-protein. Therefore we want E.Coli to produce retinal on it's own, by transferring the gen for the enzyme that cleaves beta-carotene to retinal from flies (drosophilia). | Our focus is to get this working in E.Coli, which craves a few extra steps. First we will have to link the SopII and HtrII domains together with a 9 amino acid residue linker, so that the signal transducing happens succesfully in coli. We also have to fuse HtrII and Tsr in their cytoplasmic domains, which is the HAMP domain, that both proteins contain. Fusion in this HAMP domain effectively couples the phototaxic receptors to the chemotaxis pathway, so that a phototactic effect is possible in E.Coli. These construction informations were obtained from the article: ''An Archaeal Photosignal-Transducing Module Mediates Phototaxis in Escherichia coli'' by Spudich et Al. [http://jb.asm.org/cgi/content/full/183/21/6365] That this system is functional in vitro in E.Coli has also been shown by Spudich et Al in the article ''Photostimulation of a Sensory Rhodopsin II/HtrII/Tsr Fusion Chimera Activates CheA-Autophosphorylation and CheY-Phosphotransfer in Vitro† '' [http://www.ncbi.nlm.nih.gov/pubmed/14636056]. We will only have to add retinal to the system, which is needed for proper function of the fusion,chimera-protein. Therefore we want E.Coli to produce retinal on it's own, by transferring the gen for the enzyme that cleaves beta-carotene to retinal from flies (drosophilia). | ||
In the end we want to split the whole fusion, chimer into two biobricks that can be fused as a composite part. By doing this we hopefully introduce biobricks that give E.Coli phototaxic abilities and also introduce modularity into the complex, so that it's signalling function can be coupled to other pathways than chemotaxis.<br><br> | In the end we want to split the whole fusion, chimer into two biobricks that can be fused as a composite part. By doing this we hopefully introduce biobricks that give E.Coli phototaxic abilities and also introduce modularity into the complex, so that it's signalling function can be coupled to other pathways than chemotaxis.<br><br> | ||
- | ''' | + | '''Biobrick design:''' |
- | Biobrick design:''' | + | |
Revision as of 12:14, 3 July 2010