Team:TU Munich/Parts
From 2010.igem.org
(→Malachitegreen-Binding Aptamer - BBa_K494000) |
(→Malachitegreen-Binding Aptamer - BBa_K494000) |
||
Line 12: | Line 12: | ||
===Malachitegreen-Binding Aptamer - BBa_K494000=== | ===Malachitegreen-Binding Aptamer - BBa_K494000=== | ||
<br> | <br> | ||
- | Methods to visualize nucleic acids via fluorescence are rare, partly due to the size of fluorescent reporters. Thus, we present the malachitegreen-binding aptamer to the partsregistry. By adding only 37 bp, fluorescent determination of specific nucleic acids becomes possible | + | Methods to visualize nucleic acids via fluorescence are rare, partly due to the size of fluorescent reporters. Thus, we present the malachitegreen-binding aptamer to the partsregistry. By adding only 37 bp, fluorescent determination of specific nucleic acids becomes possible allowing evalutation of PoPS devices via in vitro transcription. Binding of triphenyl dye malachitegreen to the aptamer increases fluorescence by 2360-fold. This leads to an significant increase and a shift in absorbance from 618 to 630 nm. With an emission maximum at 652 nm, aptamer-bound malachitegreen fluoresces at longer wavelength than most dyes and does not interfere with those. [[Team:TU_Munich/Parts#ref1|[1]]] We provide this part for efficient ''in vitro'' evaluation of PoPS devices in general and switches based on our concept in particular. |
{{:Team:TU Munich/Templates/ToggleBoxStart}} | {{:Team:TU Munich/Templates/ToggleBoxStart}} | ||
The malachitegreen-binding aptamer has been successfully used in screening systems being both robust and easy to produce. Aptamers provide specifities in the range of antibodies and can be evolved to target small molecules and proteins. [[Team:TU_Munich/Parts#ref2|[1]]] <br> | The malachitegreen-binding aptamer has been successfully used in screening systems being both robust and easy to produce. Aptamers provide specifities in the range of antibodies and can be evolved to target small molecules and proteins. [[Team:TU_Munich/Parts#ref2|[1]]] <br> |
Revision as of 18:36, 24 October 2010
|
||||||||
|
New PartsSingle PartsMalachitegreen-Binding Aptamer - BBa_K494000
The malachitegreen-binding aptamer has been successfully used in screening systems being both robust and easy to produce. Aptamers provide specifities in the range of antibodies and can be evolved to target small molecules and proteins. [1] PlasmidsIn general we want to provide a new principle of gene regulation which can be further developed, tested and optimizted by everybody. Therefore we focus on providing the parts needed for verification and testing of new individual switches. We provide a plasmid which can be used for further cloning, a positive control to test the general functionality and the constructs we characterized for comparison. BBa_K494001New, better pSB1A10 We recloned pSB1A10 to improve its features as a measuring plasmid to evaluate terminators in vivo using fluorescent proteins as reporters. RFP which was known to contain an RNase restriction site was exchanged against mCherry which combines good expression yield, short maturation times and an acceptable and well-characterized quantum yield. For easy introduction of the terminator to be evaluated, we ?? ?? ?? BBa_K494002Positive control BBa_K494003With His-Term/Signal BBa_K494004With Trp-Term/Signal FalsificationpSB1A10
References[1] Babendure, J.R., S.R. Adams, and R.Y. Tsien, Aptamers switch on fluorescence of triphenylmethane dyes. J. Am. Chem. Soc, 2003. 125(48): p. 14716-14717. [2] Stead, S.L., et al., An RNA-Aptamer-Based Assay for the Detection and Analysis of Malachite Green and Leucomalachite Green Residues in Fish Tissue. Analytical chemistry. 82(7): p. 2652-2660. [3] Stojanovic, M.N. and D.M. Kolpashchikov, Modular aptameric sensors. J. Am. Chem. Soc, 2004. 126(30): p. 9266-9270. [4] https://2008.igem.org/Team:Heidelberg [5] Smolke and so on.... [6] http://en.wikipedia.org/wiki/Logic_gate#Symbols |