Team:Valencia/TMS
From 2010.igem.org
Alejovigno (Talk | contribs) (→Automatic Compensation) |
Alejovigno (Talk | contribs) (→Ice bath thermocouple compensation) |
||
Line 45: | Line 45: | ||
with solid state sensors. This is a very simple option, but its | with solid state sensors. This is a very simple option, but its | ||
precision is very low, and inadequate for our purpose. | precision is very low, and inadequate for our purpose. | ||
+ | |||
+ | |||
===Fixed Compensation === | ===Fixed Compensation === |
Revision as of 16:31, 24 October 2010
Time goes by...
(El tiempo pasa...)
Follow us:
Our main sponsors:
Our institutions:
Visitor location:
Contents |
Temperature measurement system
Several of our testing
Ice bath thermocouple compensation
Our temperature measurement system is based on the Seebeck effect. The Seebeck effect happens when a junction of two different metals is exposed to a certain temperature. In the loose ends of the wires appears a difference of voltage proportional to the that temperature. Measuring the generated voltage is possible to determine the temperature which generated de effect. This is done by means of polynomial interpolation (compatible with the ITS-90 standard).
In order to use this system is necessary to connect it to a electronic acquisition system. In the new
connection places appear new thermocouple junctions (J1 and J2 in Figure 1) which modify the original
voltage difference. The are several strategies to deal with this problem.
The electronic acquisition system that we use is the Datalogger 34970A (Agilent). This device has the possibility to deal the already mentioned problem with two different strategies.
- Automatic compensation
- Fixed compensation
Automatic Compensation
The automatic compensation is made internally by the device, measuring the surrounding temperature of the copper junctions, with solid state sensors. This is a very simple option, but its precision is very low, and inadequate for our purpose.
Fixed Compensation
The fixed compensation however requires the introduction of another subsystem: an ice bath. Inside this bath, the coper wire/thermocouple confection is made. So, this is a known and fixed junction, which its temperature is introduced to the datalogger during the setup.
This methods is a very precise however it has a huge inconvenient: the temperature of the bath has to be CONSTANT. In order to ensure this though the hole experiment duration, we used a sufficiently big ice mass. Also we added a drain, to expel the liquid water.