Team:Imperial College London/Modules
From 2010.igem.org
(Difference between revisions)
(New page: {{:Team:Imperial_College_London/Templates/Header}} {| style="width:300px;background:#f5f5f5;text-align:justify;font-family: helvetica, arial, sans-serif;color:#888888;margin-top:25px;" cel...) |
|||
(One intermediate revision not shown) | |||
Line 1: | Line 1: | ||
{{:Team:Imperial_College_London/Templates/Header}} | {{:Team:Imperial_College_London/Templates/Header}} | ||
- | { | + | {{:Team:Imperial_College_London/Templates/SmallModuleHeader}} |
- | + | {{:Team:Imperial_College_London/Templates/ModuleHeader}} |
Latest revision as of 11:06, 20 October 2010
Modules | Overview | Detection | Signaling | Fast Response |
Our design consists of three modules; Detection, Signaling and a Fast Response, each of which can be exchanged with other systems. We used a combination of modelling and human practices to define our specifications. Take a look at the overview page to get a feel for the outline, then head to the full module pages to find out how we did it. |
Detection Module | Signaling Module | Fast Response Module |
We decided to design a new mechanism for parasite detection - by using the proteases they release. A novel protein bound to the cell surface, with a signaling peptide attached via a protease cleavage site. When the protease comes along, the signal peptide is released, allowing it to activate our signaling module. | To transduce the signal we used a quorum sensing system of a gram positive bacterium. The two component signal transduction system taken from S. pneumoniae transfers our peptide signal into the cell, activating the fast response module. | Our fast response mechanism is based around using two enzymatic amplification steps involving a transcripted enzyme, a deactivated enzyme and a presynthesised substrate. This greatly reduces the time required for producing a recognisable output, enabling useful field testing kits. |