Team:MIT phage

From 2010.igem.org

(Difference between revisions)
Line 28: Line 28:
<b>INTRODUCTION</b>
<b>INTRODUCTION</b>
<br>
<br>
-
Integrating the BioBrick assembly standard, synthetic biology, and phage display, a system has been developed to translate UV light input into M13 bacteriophage polymerization and biomaterial formation using E. coli as a chassis.  Utilizing a previously characterized toggle-switch, the system created is set to a stable “on” state with the introduction of UV light.  The “on” state turns on transcription of the genes necessary for phage polymerization.  The phage polymerization can occur due to engineered leucine zipper interactions of proteins being displayed on the phage coat.  Cells infected with phage that lack a certain gene (gIII) produce long fibril-like polyphage that stick out of the cell; it is these polyphage that are designed to cross-link.  In the future, these technologies could lead to advances in nanoscale fabrication, biomaterial production, and new applications for phage display technology.
+
Integrating the BioBrick assembly standard, synthetic biology, and phage display, a system has been developed to translate UV light input into M13 bacteriophage polymerization and biomaterial formation using <i>E. coli</i> as a chassis.  Utilizing a previously characterized toggle-switch, the system created is set to a stable “on” state with the introduction of UV light.  The “on” state turns on transcription of the genes necessary for phage polymerization.  The phage polymerization can occur due to engineered leucine zipper interactions of proteins being displayed on the phage coat.  Cells infected with phage that lack a certain gene (gIII) produce long fibril-like polyphage that stick out of the cell; it is these polyphage that are designed to cross-link.  In the future, these technologies could lead to advances in nanoscale fabrication, biomaterial production, and new applications for phage display technology.
<br><br>
<br><br>
<img style="float: left;" src="https://static.igem.org/mediawiki/2010/b/b1/Hairy_cells.jpg">
<img style="float: left;" src="https://static.igem.org/mediawiki/2010/b/b1/Hairy_cells.jpg">

Revision as of 07:47, 18 October 2010


Background
Context
Results
hairy cells and polymerizing phage

INTRODUCTION
Integrating the BioBrick assembly standard, synthetic biology, and phage display, a system has been developed to translate UV light input into M13 bacteriophage polymerization and biomaterial formation using E. coli as a chassis. Utilizing a previously characterized toggle-switch, the system created is set to a stable “on” state with the introduction of UV light. The “on” state turns on transcription of the genes necessary for phage polymerization. The phage polymerization can occur due to engineered leucine zipper interactions of proteins being displayed on the phage coat. Cells infected with phage that lack a certain gene (gIII) produce long fibril-like polyphage that stick out of the cell; it is these polyphage that are designed to cross-link. In the future, these technologies could lead to advances in nanoscale fabrication, biomaterial production, and new applications for phage display technology.


Image from: Rakonjac and Model, Roles of pIII in Filamentous Phage Assembly, 1998