Team:Wisconsin-Madison/encryption

From 2010.igem.org

(Difference between revisions)
(Abstract)
Line 17: Line 17:
==Description==
==Description==
===Abstract===
===Abstract===
 +
Sequential logic switches are the basis for many common electronic devices such as digital clocks and calculators. Here we present a novel design for the imitation of sequential logic using basic genetic parts within E. Coli. By using a combination of DNA recombinase enzymes, promoter systems, and an innovative pattern of recombinase binding sites, we can reproduce sequential-logical functions on the compact molecular scale. By using single DNA molecules as a medium for such functions within bacterial vehicles, we can essentially mimic the functionality of a combination lock, and produce a "locked" gene which can be effectively "unlocked" only after a specific sequence of inputs detected by the bacterial promoter system. Since the DNA molecule is used as a logical medium, the "locked" and "unlocked" states are effectively heritable to subsequent bacterial cell lines, which would make such a system useful as the computational basis for many higher-order genetic devices from bacterial calculators to engineering of new metabolic pathways to bacterial drug delivery systems.
 +
===Background===
===Background===
====Recombination====
====Recombination====

Revision as of 19:14, 25 September 2010

Description

Abstract

Sequential logic switches are the basis for many common electronic devices such as digital clocks and calculators. Here we present a novel design for the imitation of sequential logic using basic genetic parts within E. Coli. By using a combination of DNA recombinase enzymes, promoter systems, and an innovative pattern of recombinase binding sites, we can reproduce sequential-logical functions on the compact molecular scale. By using single DNA molecules as a medium for such functions within bacterial vehicles, we can essentially mimic the functionality of a combination lock, and produce a "locked" gene which can be effectively "unlocked" only after a specific sequence of inputs detected by the bacterial promoter system. Since the DNA molecule is used as a logical medium, the "locked" and "unlocked" states are effectively heritable to subsequent bacterial cell lines, which would make such a system useful as the computational basis for many higher-order genetic devices from bacterial calculators to engineering of new metabolic pathways to bacterial drug delivery systems.

Background

Recombination

Two-plasmid System


Parts

The Key Plasmid

The Lock Plasmid