Team:Imperial College London/Templates/ModuleHeader
From 2010.igem.org
(Difference between revisions)
Line 1: | Line 1: | ||
- | {| style="width:900px;background:#f5f5f5;text-align:justify;font-family: helvetica, arial, sans-serif;color:#ffffff;margin-top: | + | {| style="width:900px;background:#f5f5f5;text-align:justify;font-family: helvetica, arial, sans-serif;color:#ffffff;margin-top:5px;" cellspacing="0" |
| style="font-size:1.8em;background-color:#ea8828;width:300px;border:20px solid #ea8828;"| Detection Module | | style="font-size:1.8em;background-color:#ea8828;width:300px;border:20px solid #ea8828;"| Detection Module | ||
| style="font-size:1.8em;background-color:#728175;width:300px;border:20px solid #728175;"| Signaling Module | | style="font-size:1.8em;background-color:#728175;width:300px;border:20px solid #728175;"| Signaling Module |
Revision as of 11:07, 20 October 2010
Detection Module | Signaling Module | Fast Response Module |
We decided to design a new mechanism for parasite detection - by using the proteases they release. A novel protein bound to the cell surface, with a signalling peptide attached via a protease cleavage site. When the protease comes along, the signal peptide is released, allowing it to activate our signaling module. | To transduce the signal we used a quorum sensing system of a gram positive bacterium. The two component signal transduction system taken from S. pneumoniae transfers our peptide signal into the cell, activating the fast response module. | Our fast response mechanism is based around using an enzymatic amplification step acting upon a presynthesised substrate. This greatly reduces the time required for producing a recognisable output, enabling useful field testing kits. |
Learn more... | Learn more... | Learn more... |