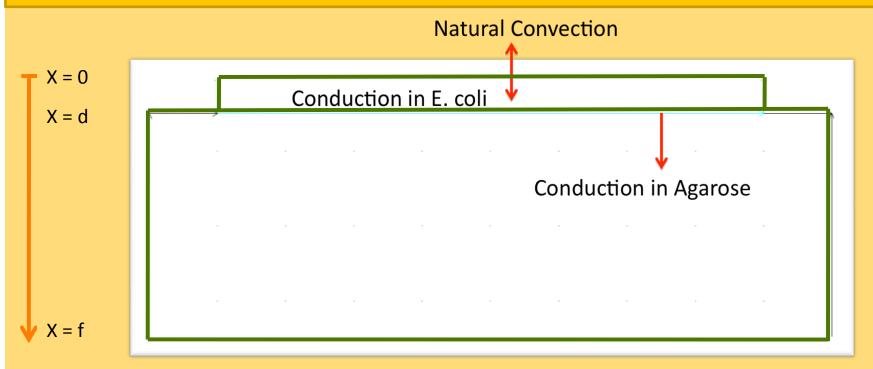
Heat Transfer Modeling Aims

- Theoretical rate of heat production
- Calorimetric technique?
- Heat Transfer in liquid vs. solid growth media
- Analytical and computational methods


Theoretical Rate of Heat Production Via AOX Pathway

- 800 mV electric potential drop of 4 electrons generates 5.12 x 10⁻¹⁹
 Joules
- 70% of electrons enter AOX pathway
- Assume time scale of ATP cycle to calculate power
- Power generated per cell is 1.6 x 10⁻¹³ Watt

Heat Transfer in Liquid Media

- Simplifying Assumptions
 - 1. Liquid solution can be assumed water
 - 2. Complete insulation
 - 3. Heat accumulation within system
 - 4. Homogeneous mixture
 - 5. No work done on or performed by the system
- Density of bacterial culture can vary by 2 orders of magnitude
- Temperature of system can be raised by 1K in 4 40 min.

Heat Transfer in Solid Growth Media

Assumptions:

- 1. Petri dish is completely insulated, and kept at 288K
- 2. Ambient temperature is 288K
- 3. Conduction through E. coli is similar to that in water
- 4. Constant coefficients for conductivity in both media, constant convective coefficient for air
- 5. Aspect ratio: width of colony >> height of colony

Steady-State Temperature Profile

1D Control-Volume (E. coli) using Rectangular Coordinates

Control-Volume 1: E. coli

 The general energy equation: No shaft or viscous work, no accumulation, steady-state

$$\frac{\partial Q}{\partial t} - \frac{\partial W_s}{\partial t} - \frac{\partial W_{\mu}}{\partial t} = \iint_{c.s.} (e + \frac{p}{\rho}) \rho(v \bullet n) dA + \frac{\partial}{\partial t} \iiint_{c.v.} e \rho dV$$

Incompressible fluid, without velocity, constant k, 1-Dimensional heat transfer

$$\alpha \nabla^2 T = -\frac{Q}{\rho c_p}$$
 Where $k = \alpha \rho c_p$ and $\nabla^2 T = \frac{d^2 T}{dx^2} + \frac{d^2 T}{dy^2} + \frac{d^2 T}{dz^2}$

Integrating Poisson Equation

$$\frac{d^2T}{dx^2} = -\frac{Q}{k} \quad \Rightarrow \quad \frac{dT}{dx} = \frac{-Q}{k}x + C_1 \quad \Rightarrow \quad T(x)_{Ecoli} = \frac{-Q}{2k}x^2 + C_1x + C_2$$

Steady-State Temperature Profile

1D Control Volume (Agarose) using Rectangular Coordinates

Control-Volume 2: Agarose

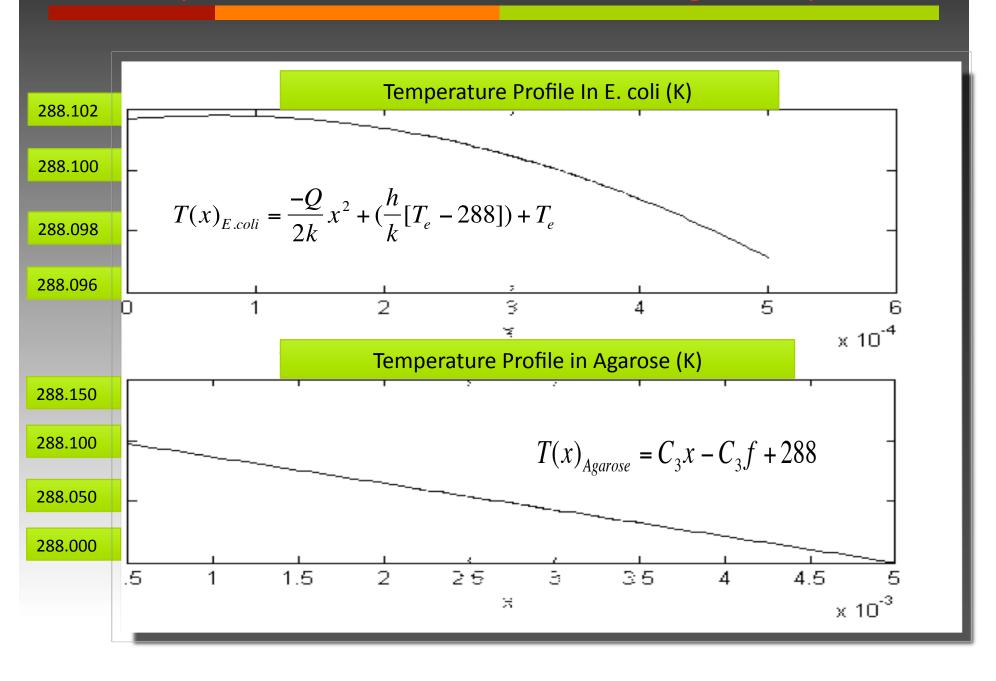
- The general energy equation is simplified to Laplace equation.
- Integrating Laplace Equation:

$$\frac{d^2T}{dx^2} = 0 \qquad \Rightarrow \qquad \frac{dT}{dx} = C_3 \qquad \Rightarrow \qquad T(x)_{Agarose} = C_3 x + C_4$$

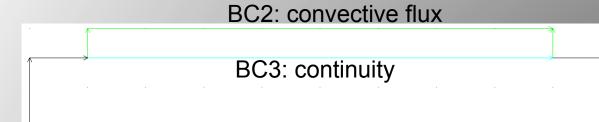
• It is not a quadratic function of X: no heat generation term.

Analytical Solutions

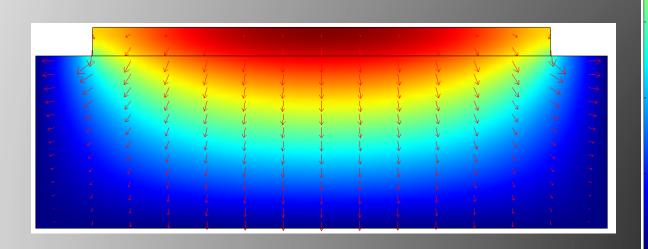
Solving for Boundary Conditions (BCs)


$$T(x)_{Ecoli} = \frac{-Q}{2k}x^2 + C_1x + C_2$$

$$T(x)_{Agarose} = C_3 x + C_4$$


- Solving for C_1 , C_2 , C_3 , and C_4 :
 - ✓ Q: volumetric flow of heat generated by E. coli
 - √ k : conductive coefficient of water at 288K
 - ✓ h: convective coefficient of air at 288K.
 - ✓ T_{ambient}: 298 K
 - ✓ Measurements of height of colony and agarose
 - \circ C₂ = T_e, Temperature at Ecoli- air boundary (unknown)
- Heat flux at the E. coli air boundary was equal to the convective heat flux (X = 0)
- Heat flux and temperature were equated at E. coli agarose boundary (X = d)

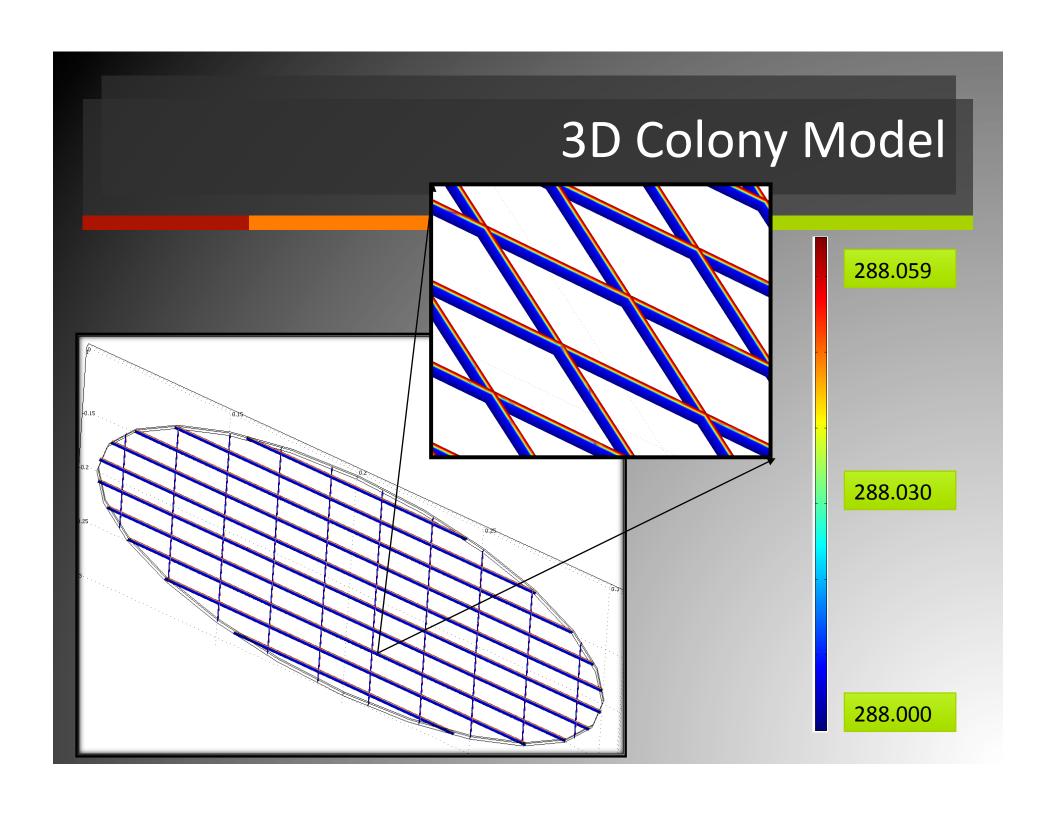
Boundary Conditions were calculated: 0.1K change in temperature.



Computational Approach:

2D Temperature Profile in COMSOL

BC1: thermal insulation



288.065

288.060

288.030

288.000

Conclusions on Modeling

- Within solution 1K change in temperature in 4 40 minutes.
- On agar, steady state temperature profile derived analytically matches closely with those found computationally using COMSOL.
- Using 1D control-volume is a good assumption, since 3D temperature profile was not considerably different.
- Derived analytically and computationally, the change in temperature due to AOX expression should be approximately 0.1 K (on solid growth media).
- Due to better accumulation of energy in liquid media, characterization of heat production may be more accessible using a liquid culture.
- A highly sensitive (at least 0.1K) thermal imaging camera will be essential for measuring heat production of bacterial colony in both liquid and solid growth media.