Team:Freiburg Bioware/Modeling

From 2010.igem.org

Revision as of 17:08, 23 October 2010 by MaxS (Talk | contribs)

Modeling

Introduction

For the modeling part we considered three main parts:
  • the virus production
  • the infection of a target cell
  • the therapy
For the first two models we assumed reactions according to the law of mass action to create a model of ordinary differential equations (ODE).

Reaction scheme for the virus production Reaction scheme for the virus infection


Literature

  • Briggs, G. E., and Haldane, J. B. (1925) A Note on the Kinetics of Enzyme Action, Biochem J 19, 338-339.
  • Culshaw, R. V., Ruan, S., & Webb, G. (2003). A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay. Journal of mathematical biology, 46(5), 425-44. Springer Berlin / Heidelberg. doi: 10.1007/s00285-002-0191-5.
  • Endres, D., & Zlotnick, A. (2002). Model-Based Analysis of Assembly Kinetics for Virus Capsids or Other Spherical Polymers. Biophysical Journal, 83(2), 1217-1230. Elsevier. doi: 10.1016/S0006-3495(02)75245-4.
  • Endy, D., Kong, D., & Yin, J. (1997). Intracellular Kinetics of a Growing Virus : A Genetically Structured Simulation for Bacteriophage T7. Biotechnology, 7.
  • Friedman, A. (2006). Cancer Models and Their Mathematical Analysis. Cancer, 246, 223- 246.
  • Gurevich, K. G. (2004). Application of methods of identifying receptor binding models and analysis of parameters. Theoretical biology & medical modelling, 1, 11. doi: 10.1186/1742-4682-1-11.
  • Johnston, I. G., Louis, A. A., & Doye, J. P. K. (2010). Modelling the self-assembly of virus capsids. Journal of Physics: Condensed Matter, 22(10), 104101. doi: 10.1088/0953-8984/22/10/104101.
  • Komarova, N. L., & Wodarz, D. (2010). ODE models for oncolytic virus dynamics. Journal of Theoretical Biology, 263(4), 530-543. Elsevier. doi: 10.1016/j.jtbi.2010.01.009.
  • Moradpour, D., Penin, F., & Rice, C. M. (2007). Replication of hepatitis C virus. Nature, 5(June), 453-463. doi: 10.1038/nrmicro1645.
  • Novozhilov, A. S., Berezovskaya, F. S., Koonin, E. V., & Karev, G. P. (2006). Mathematical modeling of tumor therapy with oncolytic viruses: regimes with complete tumor elimination within the framework of deterministic models. Biology direct, 1, 6. doi: 10.1186/1745-6150-1-6.
  • Sidorenko, Y., & Reichl, U. (2004). Structured Model of Influenza Virus Replication in MDCK Cells. Biotechnology and Bioengineering, 88, 1-14. doi: 10.1002/bit.20096.
  • Sweeney, B., Zhang, T., & Schwartz, R. (2008). Exploring the Parameter Space of Complex Self-Assembly through Virus Capsid Models. Biophysical Journal, 94(3), 772-783. Elsevier. doi: 10.1529/biophysj.107.107284.
  • Tao, Y., & Guo, Q. (2005). The competitive dynamics between tumor cells, a replication-competent virus and an immune response. Journal of mathematical biology, 51(1), 37-74. doi: 10.1007/s00285-004-0310-6.
  • Wu, J T, Byrne, H. M., Kirn, D H, & Wein, L M. (2001). Modeling and analysis of a virus that replicates selectively in tumor cells. Bulletin of mathematical biology, 63(4), 731-68. doi: 10.1006/bulm.2001.0245.
  • Wu, Joseph T, Kirn, David H, & Wein, Lawrence M. (2004). Analysis of a three-way race between tumor growth, a replication-competent virus and an immune response. Bulletin of mathematical biology, 66(4), 605-25. doi: 10.1016/j.bulm.2003.08.016.
  • Zlotnick, Adam. (1997). To Build a Virus Capsid. Journal of molecular biology.