Team:Edinburgh/Project

From 2010.igem.org

(Difference between revisions)
Line 122: Line 122:
<a name="Introduction" id="Introduction"></a><h2>Genomic BRIDGEs</h2>
<a name="Introduction" id="Introduction"></a><h2>Genomic BRIDGEs</h2>
<br>
<br>
-
<p>***</p>
+
<p>What if synthetic biologists were able to utilise an efficient two-step recombination method for markerless gene insertion and deletion? In 2008, Wei Sun, Shifeng Wang, and Roy Curtiss III of Arizona State University published such a protocol, based on the lambda red recombinase system (a simple method for disrupting chromosomal genes in bacteria such as <i>E. coli</i> using PCR products). The 2010 University of Edinburgh iGEM team has adapted their method to take advantage of the reusability of BioBricks to target critical areas of the <i>E. coli</i> genome with even greater efficiency.</p>
<br>
<br>
<br>
<br>
Line 128: Line 128:
<a name="Project" id="Project"></a><h2>Our Project</h2>
<a name="Project" id="Project"></a><h2>Our Project</h2>
<br>
<br>
-
<p>Our BRIDGE construct will contain chloramphenicol resistance (<i>cat</i>) and <i>sacB</i>. Both it and the desired gene will be inserted by homologous recombination using the lambda red system. For this we will need up and down-stream sequences of genes which we wish to replace.</p>
+
<p>Our BRIDGE construct will contain two selection markers in order to successfully complete the protocol (described in greater detail <a href="https://2010.igem.org/Team:Edinburgh/Project/Protocol">here</a>): <i>cat</i>, which confers chloramphenicol resistance, and <i>sacB</i>, which is toxic when the host is grown on sucrose. Both the construct and the desired gene will be inserted by homologous recombination using the lambda red recombinase system. For this we will require up- and down-stream sequences of the genes that we wish to replace.</p>
<p>To prove the principle of BRIDGE we will remove a non-essential, constitutively expressed gene from the <i>E. coli</i> genome and replace it with a well known marker, such as GFP. We also have several genes from a past project idea which we could delete to increase fatty acid synthesis, and further genes we could introduce which will result in the production of long chain alkenes from the excess fatty acids. This is not useful for our current project but it is a nice way to demonstrate the effectiveness of BRIDGE.</p>
<p>To prove the principle of BRIDGE we will remove a non-essential, constitutively expressed gene from the <i>E. coli</i> genome and replace it with a well known marker, such as GFP. We also have several genes from a past project idea which we could delete to increase fatty acid synthesis, and further genes we could introduce which will result in the production of long chain alkenes from the excess fatty acids. This is not useful for our current project but it is a nice way to demonstrate the effectiveness of BRIDGE.</p>
<p>Eventually, we hope that BRIDGE will be used to introduce whole light producer-sensor constructs, to demonstrate its ability for utilisation in further work using BioBricks.</p><br>
<p>Eventually, we hope that BRIDGE will be used to introduce whole light producer-sensor constructs, to demonstrate its ability for utilisation in further work using BioBricks.</p><br>

Revision as of 14:38, 11 October 2010







Genomic BRIDGEs


What if synthetic biologists were able to utilise an efficient two-step recombination method for markerless gene insertion and deletion? In 2008, Wei Sun, Shifeng Wang, and Roy Curtiss III of Arizona State University published such a protocol, based on the lambda red recombinase system (a simple method for disrupting chromosomal genes in bacteria such as E. coli using PCR products). The 2010 University of Edinburgh iGEM team has adapted their method to take advantage of the reusability of BioBricks to target critical areas of the E. coli genome with even greater efficiency.



Our Project


Our BRIDGE construct will contain two selection markers in order to successfully complete the protocol (described in greater detail here): cat, which confers chloramphenicol resistance, and sacB, which is toxic when the host is grown on sucrose. Both the construct and the desired gene will be inserted by homologous recombination using the lambda red recombinase system. For this we will require up- and down-stream sequences of the genes that we wish to replace.

To prove the principle of BRIDGE we will remove a non-essential, constitutively expressed gene from the E. coli genome and replace it with a well known marker, such as GFP. We also have several genes from a past project idea which we could delete to increase fatty acid synthesis, and further genes we could introduce which will result in the production of long chain alkenes from the excess fatty acids. This is not useful for our current project but it is a nice way to demonstrate the effectiveness of BRIDGE.

Eventually, we hope that BRIDGE will be used to introduce whole light producer-sensor constructs, to demonstrate its ability for utilisation in further work using BioBricks.



Table of Contents