Team:Cambridge/Tools/Lighting

From 2010.igem.org

(Difference between revisions)
Line 24: Line 24:
=Modelling=
=Modelling=
-
<html>
 
-
<div style="position:relative; height:560px;">
 
-
<div style="position:absolute; left:0px; width:300px; top:0px; padding-bottom:50px;">
 
-
<a href="/Image:Solar_Spectrum.png" class="image" title="Solar Spectrum.png"><img alt="" src="/wiki/images/thumb/4/4c/Solar_Spectrum.png/300px-Solar_Spectrum.png" width="300" height="223" border="0" /></a>
 
-
<br />
 
-
</p>
 
-
<div style="margin-top:5px; width:300px; font-size:12px; color:#6e6e6e; line-height:15px; text-align:center"><i>Figure 1: The  solar radiation spectrum for direct light at both the top of the Earth's atmosphere and at sea level.</i></div>
 
-
</div>
 
-
 
-
<div style="position:absolute; left:340px; width:300px; top:0px; padding-bottom:50px;">
 
-
<a href="/Image:Fischerispectrum.jpg" class="image" title="Fischerispectrum.jpg"><img alt="" src="/wiki/images/thumb/b/b3/Fischerispectrum.jpg/300px-Fischerispectrum.jpg" width="300" height="234" border="0" /></a>
 
-
<br />
 
-
 
-
<div style="margin-top:5px;  width:300px; font-size:12px; color:#6e6e6e; line-height:15px; text-align:center"><i>Figure 2: The emission spectrum of V. Fischeri (shown in black)</i></div>
 
-
</div>
 
-
 
-
<div style="position:absolute; top:280px; width:300px; padding-bottom:50px;">
 
-
<a href="/Image:Photopicscotopic.png" class="image" title="Photopicscotopic.png"><img alt="" src="/wiki/images/thumb/8/89/Photopicscotopic.png/300px-Photopicscotopic.png" width="300" height="205" border="0" /></a>
 
-
<br />
 
-
</p>
 
-
<div style="margin-top:5px; font-size:12px; color:#6e6e6e; line-height:15px; text-align:center"><i>Figure 3: Photopic (black) and scotopic (green) luminosity functions.</i></div>
 
-
</div>
 
-
 
-
<div style="position:absolute; top:420px; left:340px; width:300px; padding-bottom:50px;">
 
-
<a href="/Image:Luminosityfunction.png" class="image" title="Luminosityfunction.png"><img alt="" src="/wiki/images/thumb/3/3b/Luminosityfunction.png/300px-Luminosityfunction.png" width="300" height="44" border="0" /></a>
 
-
<br />
 
-
<div style="margin-top:5px; font-size:12px; color:#6e6e6e; line-height:15px; text-align:center"><i>Figure 4: The formula for calculating luminance. (F:Luminous Flux, y:Luminosity Function,J:Spectral Power Distribution,λ:Wavelength</i></div>
+
 
-
</div>
+
 
-
</div>
+
 
-
</html>
+
To show that it may one day indeed be possible to have bioluminescent trees replacing street lamps we considered how efficicient the plants would have to be in order to match a low-intensity street lamp.
To show that it may one day indeed be possible to have bioluminescent trees replacing street lamps we considered how efficicient the plants would have to be in order to match a low-intensity street lamp.
==Radiation In==
==Radiation In==
-
 
+
{{:Team:Cambridge/Templates/RightImage|image=Solar_Spectrum.png|caption=''Figure 1: The  solar radiation spectrum for direct light at both the top of the Earth's atmosphere and at sea level.''}}
Figure 1 shows the radiation spectrum recieved from the sun at sea level. In total this gives about '''1,321 – 1,471 W/m<sup>2</sup>''' of radiant energy for regions in North America. (Data supplied by American Society for Testing and Materials ([http://www.wmo.int/pages/prog/www/IMOP/publications/CIMO-Guide/CIMO%20Guide%207th%20Edition,%202008/Part%20I/Chapter%208.pdf. ASTM]) Terrestrial Reference Spectra, a common standard used in photovoltaics).  
Figure 1 shows the radiation spectrum recieved from the sun at sea level. In total this gives about '''1,321 – 1,471 W/m<sup>2</sup>''' of radiant energy for regions in North America. (Data supplied by American Society for Testing and Materials ([http://www.wmo.int/pages/prog/www/IMOP/publications/CIMO-Guide/CIMO%20Guide%207th%20Edition,%202008/Part%20I/Chapter%208.pdf. ASTM]) Terrestrial Reference Spectra, a common standard used in photovoltaics).  
Line 113: Line 86:
If you look at a black object and ask "how much light is coming out of that?" there are two answers. The first is obviously none, since it appears black, but the second relies on the fact that it is possible that the object is very hot and is emitting in the infra-red, or is a source of UV and is thus emitting a lot of light. The two measures above quantify this difference. Radiance measures the actual electromagnetic radiation coming from an object, whereas luminance adjusts for the perceptive abilities of the human eye. If you look at figure 3 you can see the '''luminosity functions''' which supply this weighting in the visible part of the spectrum.
If you look at a black object and ask "how much light is coming out of that?" there are two answers. The first is obviously none, since it appears black, but the second relies on the fact that it is possible that the object is very hot and is emitting in the infra-red, or is a source of UV and is thus emitting a lot of light. The two measures above quantify this difference. Radiance measures the actual electromagnetic radiation coming from an object, whereas luminance adjusts for the perceptive abilities of the human eye. If you look at figure 3 you can see the '''luminosity functions''' which supply this weighting in the visible part of the spectrum.
 +
 +
{{:Team:Cambridge/Templates/RightImage|image=photopicscotopic.png|caption=''Figure 3: Photopic (black) and scotopic (green) luminosity functions.''}}
There are two curves, one for photopic vision, and the latter for scotopic. The former is normal vision in good light and covers the normal range of colours. The latter is for dark vision, when the (colour percieving) cone cells are unable to function. This part of the reason why you can only see in black and white in the dark.
There are two curves, one for photopic vision, and the latter for scotopic. The former is normal vision in good light and covers the normal range of colours. The latter is for dark vision, when the (colour percieving) cone cells are unable to function. This part of the reason why you can only see in black and white in the dark.
To convert from Radiance to Luminance you integrate the power spectrum weighted by the luminosity function so that wavelengths beyond that of human perception are cut out. Note that this transformation is therefore one-way. You can't convert from Luminance to Radiance.
To convert from Radiance to Luminance you integrate the power spectrum weighted by the luminosity function so that wavelengths beyond that of human perception are cut out. Note that this transformation is therefore one-way. You can't convert from Luminance to Radiance.
 +
 +
{{:Team:Cambridge/Templates/RightImage|image=Luminosityfunction.png|caption=''Figure 4: The formula for calculating luminance. (F:Luminous Flux, y:Luminosity Function,J:Spectral Power Distribution,λ:Wavelength''}}
The measurements of light output taken above are in '''lumens''' (a measurement of Luminance) where 1lm=1cd*sr. The lumen thus quantifies the human-percieved total amount of light being emitted from an object. The above values use the scotopic luminosity function, since street lights operate in low-light conditions.
The measurements of light output taken above are in '''lumens''' (a measurement of Luminance) where 1lm=1cd*sr. The lumen thus quantifies the human-percieved total amount of light being emitted from an object. The above values use the scotopic luminosity function, since street lights operate in low-light conditions.
Line 123: Line 100:
Total Bacterial Luminance(lm)=471.13 x Total Energy Output(W)
Total Bacterial Luminance(lm)=471.13 x Total Energy Output(W)
 +
 +
{{:Team:Cambridge/Templates/RightImage|image=Fischerispectrum.jpg|caption=''Figure 2: The emission spectrum of V. Fischeri (shown in black)''}}
It should be noted that this is actually a really good conversion factor, only about 33% of the radiant energy is lost to the outer regions of human perception (at best 1lm = 683.002 W). This is due to the fact that (as you can see from the scotopic luminosity function in figure 3) the human eye is better at seeing blue light in the dark than red light, and our bacterial light is clearly blue.
It should be noted that this is actually a really good conversion factor, only about 33% of the radiant energy is lost to the outer regions of human perception (at best 1lm = 683.002 W). This is due to the fact that (as you can see from the scotopic luminosity function in figure 3) the human eye is better at seeing blue light in the dark than red light, and our bacterial light is clearly blue.

Revision as of 15:45, 27 October 2010