Team:DTU-Denmark/Switch
From 2010.igem.org
Home | The Team | The Project | Parts submitted | Modelling | Notebook | Blog |
What is a switch?what is a biological switch, examples and existing constructions, What can we use it for. what have been build. Many small cuircuits have been constructed. And reviews have been done on also trying to build regulatory function in enzymes. See article (“Designing switchable enzymes” Marc Ostermeier) Design and engineering of bi[o]stable The THEORETICAL overall aim and vision Selection of PartsRequirements before a biological switch functions. On the paper and theoretically. Modeling(modeling) Selecting N protein and nut siteIn the end, after evaluating what component pair to use we selected λ N-protein and nut-site. Different nut-sites N-protein systems have been identified and investigated (REFFF), the nutsites for λ-phage and p21, p22, are the best described (REFFF) comparison of the antiterminator effect have not been charfully investigated, as emphasis have been on function and interacting parts. we wanted to selected the nutsite with a strong consistent anti-terminator effect. But as this was not well defined continues work was done with the lambda nut side because more articles and knowledge was available, for potential trouble shooting and improvement of the system interaction and dynamic. What have been described is that the N-nut-site pair have specific function and thus the λ-N-protein was used for continues, construction of the switch. Fluorescent Proteinsas we departed in the idea from the terminator screening plasmids described in the partsregistry.org (REFFF) we had a primary focus on fluorescence proteins as our reporter systems. Further we wanted to have high quality data, with a high resolution. We descided on the in-house expertice on using a continous microfermentor system that can measure two fluorescence proteins continuously (biolector) and a flow cytometer, also capable of measuring at two different wave length. |