Team:Northwestern/SideProject
From 2010.igem.org
Home | Brainstorm | Team | Acknowledgements | Project | Human Practices | Parts | Notebook | Calendar | Protocol | Safety | Links | References | Media | Contact |
---|
Human PracticesCommunication, Self-Regulation, and Fidelity: Fostering Trust to Ensure Ethical InnovationThe field of synthetic biology has unlocked an enormous number of new approaches to solving the world’s problems. Scientists have begun researching applications of this technology to health sciences, energy crisis, environmental cleanup, and even selective breeding of plants and animals. However, as this frontier involves tampering of life on its most fundamental scale, there are many understandable concerns as to its utilization. While some people fear that these tools may later be turned to people in a form of eugenics, others worry that some creation developed with the intention to help people might have some unforeseen negative consequences. If we as scientists wish to gain the trust of the general public, we must be as transparent and communicative in our pursuits as possible. Yet outside regulation can stymie innovation, as in the case of clinical research. Therefore to develop the best results with the best intentions, it is important for the synthetic biology community to be self-regulatory in the most legitimate sense. In this essay we will discuss some general fears, some unintended consequences, and regulatory success and failures, followed by a proposed solution. Throughout our discussion and alongside historical examples, we will employ Northwestern University’s 2010 iGEM project SCIN (Self-regenerating Chitin INduction) as a case study. Chitin is used in many industrial processes, is known to be a good biocompatible material for surgical thread, and improves the defense mechanisms in agricultural plants when used as a fertilizer. A cheap replenishing source of this polymer could be very valuable, but might this be harmful? FearPeople will always fear what they do not understand. If we wish for society to trust the scientific community and share our passions, we must first help them to understand. People’s fear and/or repugnance for synthetic biology can probably be mostly arranged into three categories: playing God, Frankenstein’s monster, and the Mad Scientist. As the first is a religious one, we will not focus on it here and will instead leave it for the priests, monks, and philosophers of the world to discuss. In Frankenstein’s monster, people see the products of science let loose to maraud the world with unintended consequences – this is not a negligible risk. As tempting as it may be to engineer sterile mosquitoes or synthesize organisms that can hunt down and kill pathogens, the result could be a severe lapse in the current food chain or unexpected evolution of new pathogens. Regulation and CommunicationExternal regulation has certainly been responsible for necessary scientific and industrial reforms. Governmental organizations such as the Environmental Protection Agency and Food & Drug Administration have been able to enact fundamental standards for ecological and patient protection. Today it would be impossible to conduct another Tuskegee Syphilis Study thanks to informed-consent regulations enforced by the FDA. However, too often these agencies propose measures subject more to political fashion than scientific evidence, meaning under- or misplaced-regulation. The EPA has been essentially neutered in recent years and often neglects important information. On the other hand, over-regulation leads to monstrous bureaucratic costs and months of wasted time, in the case of medicine leading to prolonged suffering and unnecessary deaths. In some countries, clinical studies require so much regulatory bureaucracy that it becomes impossible for any groups but for-profit organizations to conduct them in a manner inevitably slanted towards profit rather than need. Honor and FidelityIn the face of such opposition, it is too early to make a concerted attempt to roll back excessive regulation in synthetic biology. Before we ask the commonwealth to trust us, we must prove that we are worthy of such confidence. In effect, we must begin to regulate ourselves before we ask that other organizations scale back their own efforts. We were fortunate enough to be able to meet with Dr. Laurie Zoloth, Director of the Center for Bioethics, Science and Society and Professor of Medical Ethics and Humanities at Northwestern University, to discuss her views on the ethical necessities in biological research. She has proposed to fill a “vacant middle” with a culture that is open source when possible, creates incentives for honesty and good use of technology, and takes advantage of peer relationships between scientific colleagues to influence researchers to “do good.” If we know that some course will result in immediate good, it should be pursued. Dr. Zoloth has proposed something like a “Jedi code of honor” based on a moral, societal hermeneutic circle to move forward with the best intentions: will this benefit or harm society, and do our duties to society necessitate this research? We agree that for ultimately positive results in synthetic biology, there must be a cultural imperative to proceed in discovery with an eye to an empathetic, virtuous goal. Rather than traditional indoctrination, this sort of philosophy depends on personal mentorship at the level of the primary investigator and the peer; the scientist has a peer obligation as well as a personal obligation to a code of behavior in place because his friend is depending on him, not because the government has dictated it. We are miles away from this level of trust but unless there is a culture based on duty to the other, any effort to regulate is doomed to eventual failure. ConclusionThe future of synthetic biology is bright with the possibility of enormous contributions to the world, but we are not there yet. First we must confront a number of ethical concerns which we have had to consider before pursuing any new technology. However, as this field involves the calibration of life on a fundamental level, we must respect and address a myriad of issues with a concerted effort to either investigate or dissuade fear. In addition, to move forward with greatest efficiency and results, the synthetic biologist must imbue his students and colleagues with a sense of purpose and honor. It is only through always acting with the most faithful intent that we can prevent misappropriation of knowledge and evil applications. Lego-like “part” reductionism is a wonderful way to simplify our work with genetic constructs, but we should be cautious to avoid applying this reductionism to the ethical concerns of society. |