Team:DTU-Denmark/Switch
From 2010.igem.org
Home | The Team | The Project | Parts submitted | Results | Notebook | Blog |
|
UNDER CONSTRUCTION Biological switchesA biological genetic switch is a system that enables cells to "remember" a state set by transient signals. Many biological processes exist in mutually exclusive states. Cells or organisms exist in one of the distinct states depending on the level of stimulus input. A change in states is triggered in response to fluctuations of a stimulus above or below threshold level. This is frequently mediated by a regulatory circuit with positive and/or negative feedback mechanisms. Temperate bacteriophages are classic examples of such natural genetic switches as they can choose between two distinct life cycles, namely lytic and lysogenic. However, once the lytic cycle is instigated, the lysogenic cycle cannot be reinstated. For more information please click here. Bistable SwitchesNow, taking an idea from the world of electronics, we define a bistable switch with a memory function and with two mutually exclusive steady states. Once stability in one state is reached; only stimulus above threshold level would switch the system towards reaching the other steady state. In bistable switches the threshold level of the stimulus input in forward reaction is different from the one in the reverse direction. Such behaviour is known as hysteresis. However, bistable switches are not naturally occurring mechanisms. As in the example with bacteriophages, once the lytic cycle is induced, the lysogenic state cannot be reattained. This is also an example of a robust switch in which once the system is set to be in one state, reduction and in some cases even removal of the stimulus input does not trigger switching to the other state. Robust switches have biological importance because in mechanisms such as differentiation of cells during development, gene regulatory systems must hold the state set during development. This can be accomplished by a network of genes that regulate one another through repressor and activator proteins that they encode. Design of our Bi[o]stable SwitchThe simplest of such biological switches is one in which each of two repressor proteins represses the synthesis of the other. When both the repressor proteins are allowed to act, one of two stable states will be observed. In one steady state, the expression of repressor "one" is turned on and expression of repressor "two" is turned off. The repression of expression of repressor "two" is maintained by repressor "one", which means that the repressor "one" essentially acts as its own activator by inhibiting the expression of the repressor, repressor "two", that would repress its expression. In the other steady state, expression of repressor "two" is turned on and expression of repressor "one" is turned off. In a system where the repressors can be controlled by outside input signals such as inducers or anti-repressor proteins, the system can be forced into its other stable state. This is illustrated in Figure 2. We looked to nature for inspiration to design such a switch and found the regulatory systems of the lambda phage as well as the Gifsy phages. The Gifsy phages are temperate phages found in Salmonella enterica that have an overall gene organisation typical of the lambdoid phage family (for more theory please see Regulatory Systems). Step-wise Engineering of the SwitchIn our bistable switch we have three elements of regulation:
Step 1The divergent promoters from both Gifsy1 and Gifsy2 phages are utilized in our system. The initial Gifsy1 and Gifsy2 constructs are illustrated below, Figure 3 and Figure 4, respectively. Step 2Step 3Step 4In the switch design, each half switch contains a nut site followed by a terminator, as well as an antiterminator. The roles of these parts are to increase the stability of the current state of the switch. The pRM promoters are not very well repressed by the GogR/GtgR repressors and promotes transcription even in their presence. If transcription was allowed to continue to the antirepressor located on the inactive switch, the switch could change state spontaneously. The terminator ensures that this does not happen. The antiterminator of the active state is expressed, allowing continued transcription past the terminator. Step 5Now that we are able to keep the switch in each state stably, we also need a means to be able to switch the state of the switch at will. To do this we introduce two input plasmids illustrated in Figure 13. The plasmids contain the antiterminators and antirepressors of each state respectively, in front of two different inducible promoters. When the plasmid corresponding to state 1 is induced, the switch is forced into state 1. This happens because the state’ s antiterminator and antirepressor are produced. The antirepressor inactivates state 2’ s repressor, resulting in increased transcription through state 1. At the same time, the antiterminator allows transcription to continue past state 1’ s terminator, where the genes for the same antirepressor and antiterminator are located. Thus, with a sufficient amount of induction, the switch will have switched states. The Final SwitchApplicationsIf successfully engineered, this new technological tool could advance methods used in many different fields of biological science, such as environmental engineering, food applications and medico technology. A few suggestions of such advances are listed below.
Our original project idea was developed around the last example, where light (red light at 660nm and blue light at 470nm) would be used as input to induce switching between the two stable states. The initial ideas behind this was to use the bacteria to create artistic drawing or to track movement in biofilm. Based on this idea, as well as research of biological switches and the regulatory mechanisms found in phages, we discovered untapped potential in designing a biological switch. |