Team:Berkeley/Project/Self Lysis

From 2010.igem.org

Revision as of 22:56, 25 October 2010 by AmyNKristofferson (Talk | contribs)

Self Lysis Header.png



Overview: The Self Lysis Device acts to degrade the bacterial membrane (inner membrane, peptidoglycan layer and outer membrane). In the overall delivery scheme, if the timing works out so that self-lysis occurs after the bacteria has been consumed by the Choanoflagellate, the payload will be released into the vesicle.

Components:

Pbad promoter: allows for fast, controlled induction, which allows us to better control the timing of lysis. Also, since this promoter is only induced by an exogenous molecule, it helps address biosafety concerns.

Characterization in new medias:

Self-lysis Device To break through the E. coli’s inner and outer cell wall, we used the self-lysis device derived from the 2008 UC Berkeley iGEM team (registry name and picture of 2008 part). There were, however, several challenges we needed to overcome before the device could be applied in a choanoflagellate. First, the lysis device had to be inducible by an exogenous molecule. For practical reasons we needed to be able to control when self-lysis occurred and for biosafety reasons self-lysis could not occur outside of a laboratory culture. For example, we initially constructed the self-lysis under a magnesium based promoter but that construct was not used because magnesium is commonly found in sea water and mammalian cells and would lead to lysis in undesirable and potentially dangerous situations. By putting the device under the control of an arabinose-induced promoter, Pbad, we were able to induce lysis only when desired and prevent incidental lysis. Moreover, self-lysis had to be fast acting: the bacteria had to lyse itself after it was ingested by the choanoflagellate but before it was digested by the choanoflagellate. The 2008 part took closer to five hours to lyse but we estimated that choanoflagellates digestion takes only one to two hours; therefore we needed a faster acting device. To accomplish this we added BRB to the original construct. BRB degrades the inner cell membrane. With this addition, we were able to have lysis occur within an hour after induction.

Although the self-lysis device must be under control of an exogenous inducer, self lysis must also occur in the choanoflagellates culture. In the in vitro assay for self-lysis, E. coli were grown and induced in TB media. However, choanoflagellates cannot survive in TB or LB media. Similarly, an in vitro assay showed that self-lysis failed to occur when the bacteria were put in the artificial sea water used to culture choanoflagellates. We found a compromise between the health of choanoflagellates and the activity of the self-lysis device by using Choano Growth Media 3 (CGM3). As shown in the graph below, where a decrease in optical density indicates successful lysis, the bacteria were able to lyse themselves in CMG3 media almost as well as they did in TB.